[I'MTech] In search of a future for fast neutron reactors

In August 2019, it was announced that the Astrid project for sodium fast reactors (SFR) was to be abandoned. In late 2020, Stéphanie Tillement, a researcher at IMT Atlantique, analyzed the rationale behind this abandonment in an article for I’MTech. But what is the global situation? Does this technology still have a future? Stéphanie Tillement and her colleague Frédéric Garcias analyze the prospects for this industry.

Stéphanie Tillement
Stéphanie Tillement, teacher-researcher
at Social and Management Sciences department

In 2000, fast neutron reactors returned to center stage, after years of being forgotten. The United States Department of Energy (DOE) organized a very important event for the nuclear industry at the global level, the “Generation IV International Forum” (GIF). This forum sought to help the nuclear industry recover by kick-starting research and innovation based on what were described as “revolutionary” reactors, which had to fulfill a number of very general objectives: safer, more cost-effective, reduce the risks of proliferation, save natural resources and minimize waste. And sodium fast reactors (SFR) fulfill these five criteria.

It was during this forum that this notion of generations of nuclear reactors was first defined. Those currently in operation in France – all of which are Pressurized Water Reactors (PWR) – are referred to as generation II. The European Pressurized Reactor (EPR) being built in Flamanville is referred to as a generation III – as are those being built in England and in Finland and the two EPRs in operation in Taishan in China. Generation IV reactors refer to reactors that are able to fulfill the previously-mentioned objectives. The members of the Generation IV forum agreed on six concepts of reactors referred to as generation IV, three of which are SFR. Among them, one is lead-cooled, another is gas-cooled, and the third is sodium-cooled, like the Astrid prototype introduced by France.

Saving uranium

"We have to put ourselves in the context of the 2000s," says Frédéric Garcias, a researcher in organizational management at the University of Lille. "The nuclear industry was going through a lull in the construction of new reactors, in particular in the wake of the Chernobyl accident, but many believed that it remained a solution for the future. In what form, and within what timeframe? Growth was anticipated in China and in emerging countries, which could give rise to a high level of uranium consumption. Thus the interest in seeking uranium-efficient sectors." Fast neutron reactors are able to consume depleted uranium and plutonium, which are waste products of previous generations of reactors.  

Verra-t-on une relance du nucléaire en France, par l’intermédiaire des SMR ou non ?

Politicians and the nuclear industry do not operate on the same timeframe. A presidential term lasts five years, while nuclear power take decades to develop. Could SMRs be an answer to this short-term vision? "We don’t yet know the answer to this question," say the two researchers. SMRs would certainly be better- suited to a more volatile, less centralized world, with more participatory democracy. But we would also lose some of the advantages of the sector, such as its small physical footprint. And there would still be safety issues. France currently counts 18 nuclear power plants (56 reactors) – far more SMRs would be needed to produce the same amount of energy. This is unlikely to gain wide public acceptance!

More information

Read more on the I'MTech blog: « In search of a future for fast neutron reactors »

Published on 21.10.2020

by Pierre-Hervé VAILLANT