An elite technological university

Environmental transition

Environmental transition is organized into three main areas: engineering, metrology, and observation and ICT for the environment, with diversified application sectors covering the sea, and urban and industrial territories.

  • Environmental engineering is concerned with resource management, the reduction and recovery of industrial waste, and air and water quality management. 
  • Metrology: in the nuclear field, metrology involves measuring radioisotopes and monitoring their behavior in the environment, studying the future and storage of waste, evaluating the management of contaminated areas, and the memory of this data. 
  • Observation and ICT: Sea-related work focuses on the observation of the marine environment and on maritime surveillance through the processing of satellite and underwater data
  • Transition environnementale
  • Transition environnementale - Prever
  • Transition environnementale - Flowat
  • Transition environnementale - maritime
  • Transition environnementale - lussi

Chaires (French research consortia)

  • AI OCEANIX: Developing AI-driven strategies for the next generation of ocean monitoring systems
  • STOCKAGE : Storage of radioactive waste with partners EDF, the EDF Foundation, ANDRA and Orano.

Some of our partners

  • LabCom TESMARAC between Subatech and Triskem
  • ZATUZone Atelier Territoires Uranifères develops research on areas affected by radioactivity.
Research projets
TRANSition in Food – Energy – Ecology

TRANSFEE concerns the acquisition of cutting-edge equipment positioned on the major challenges of tomorrow's industry in the fields of environmental, energy and food transitions. By reinforcing the GEPEA's platforms and technical platforms and by positioning this equipment on a common objective carried by the two different GEPEA supervisors (Nantes University, IMT-Atlantique, ONIRIS, CNRS), TRANSFEE aims to increase scientific excellence while providing concrete solutions on several key issues that are the sober and optimized management of (bio)resources, the preservation of environmental quality (air-water), the material-energy covalorization of residues or industrial waste, and the exploitation of marine resources and in particular microalgae. The TRANSFEE project also consolidates the relationship between research and training by sharing training at all levels (e.g.: BUT, Engineering School, International Master, continuing education).

Projet CPER
Séparation en Masse couplée à l'Ionisation Laser pour des applications Environnementales et en Santé
Projet CPER
Solvent regeneration by microwave irradiation for a clean and intensified CO2 recovery process

Electrifying thermal processes as a solution for industry decarbonation.

The WAVEINCORE project aims to develop new desorption technologies applied to the thermal regeneration of amine-based solvents using microwave irradiation (MW) heating. Operating at temperatures below 100°C with the ability to use renewable electricity instead of superheated steam, a drastic reduction in energy penalty and solvent losses are expected, along with a gain regarding the quantities of water required for the process. Going beyond the established proof of concept, the innovative nature of the project lies in the optimized design of laboratory-scale demonstration prototypes, operating MW-assisted regeneration of amine solutions representative of advanced post- combustion CO2 capture processes. It also includes the development of phenomenological models describing the effect of MW radiation coupled with transfer mechanisms - reactions occurring during the regeneration of typical gas-solvent systems. The consortium brings together two research teams from the GEPEA laboratory, IMT Atlantique and ONIRIS, as well as the company SAIREM.

Projet ANR
An integrated observation system for sustainable ocean management EuroSea

EuroSea works to improve the European ocean observing and forecasting system in a global context.

Horizon 2020
TakiNg actIoN to prevent and mitigate pollution oF groundwAter bodies

The project aims to develop cost-effective groundwater monitoring strategies, pollution prevention and abatement technologies, and an early warning system.

Horizon Europe
Five pillars to DECARBOnize the last MILE logistics

Gathering 31 partners from 10 different countries, DECARBOMILE aims to trigger an unprecedented improvement of the green last mile logistics in Europe. To reach that goal, DECARBOMILE relies on a strong experience of decarbonating urban logistics through European initiatives such as CIVITAS. Partners will build upon all previous results to develop improved delivery methods, tools and methodologies, and implement them across Europe.

Horizon Europe
Edito-Model Lab
Underlying models for the European DIgital Twin Ocean - EDITO-Model Lab

EDITO-Model Lab will prepare the next generation of ocean models, complementary to Copernicus Marine Service to be integrated into the EU public infrastructure of the European Digital Twin Ocean [j1] (EDITO) that will ensure access to required input and validation data (from EMODnet, EuroGOOS, ECMWF, Copernicus Services and Sentinels satellite observations) and to high performance and distributed computing facilities (from EuroHPC for High Performance Computing and other cloud computing resources) and that will be consolidated under developments of Destination Earth (DestinE).

Horizon Europe
Statistical ChAracterization of multi-scaLE complex Systems with information theory

Statistical physics shows strong benefits when describing multi-scale complex systems such as: fluid turbulence, climate or neural signals.  In particular, Information Theory exhibits strong potentialities in the study of complex systems due to its power to characterize non-linear behaviors. Moreover in the last years, AI models have been strongly developed to deal with a large number of scientific questions, and more particularly complex systems. Thus, SCALES proposes to combine this IT framework with AI models to characterize interactions among the scales of complex systems.

Projet ANR
Pollutant emissions from ships

Despite the introduction of limits on the sulfur content of marine fuels, the contribution of maritime transport to PM 2.5 emissions is estimated to have increased by 45% in the Mediterranean Sea over the period 2006 to 2020. To limit the environmental and health impact of maritime traffic, the International Maritime Organization has imposed regulations to limit polluting emissions, in particular by defining sulphur emission control zones (SECA zone), aiming to target this reduction in port areas, and in areas where maritime traffic is dense near the coastal edges. But particulate and gazeous emissions of ships remain a major health and environmental issue.

Projet ADEME
Characterization of particulate emissions from passenger ships

In France, the contribution of maritime transport to air pollution appears to be low if we consider conventional emission inventories approaches. On the other hand, this pollution is localized, especially in port areas where ships perform regular maneuvers. Among the pollutants produced by ships, SOx, NOx and fine particles are considered to be the three most problematic pollutants in terms of environmental and health impact. This CAPNAV project supported by ADEME as part of the CORTEA call for proposals aims to better quantify and characterize particulate emissions, particularly in the different phases of ship maneuvering.

Projet ADEME