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Abstract—In this paper, we present a new robust database
watermarking scheme the originality of which stands on a
semantic control of the data distortion and on the extension of
Quantization Index Modulation (QIM) to circular histograms
of numerical attributes. The semantic distortion control of the
embedding process we propose relies on the identification of
existing semantic links in between values of attributes in a tuple
by means of an ontology. By doing so, we avoid incoherent or
very rare record occurrences which may bias data interpretation
or betray the presence of the watermark. In a second time, we
adapt QIM to database watermarking. Watermark embedding
is conducted by modulating the relative angular position of the
circular histogram center of mass of one numerical attribute.
We theoretically demonstrate the robustness performance of
our scheme against most common attacks (i.e., tuple insertion
and deletion). This makes it suitable for copyright protection,
owner identification or traitor tracing purposes. We further verify
experimentally these theoretical limits within the framework of
a medical database of more than one half million of inpatient
hospital stay records. Under the assumption imposed by the
central limit theorem, experimental results fit the theory. We
also compare our approach with two efficient schemes so as to
prove its benefits.

Index Terms—Watermarking, Relational Database, Informa-
tion security, Ontology.

I. INTRODUCTION

he last few years have seen a remarkable increase in the
construction, transfer and sharing of databases. This is
mainly due to the reinforcement of their economical value
and decisional interest, the latter being related in part to the
progress of data mining and analysis tools. However, these
new access capabilities induce at the same time security risks,
as data records may be redistributed or modified without
permission. Several examples of information leaks appear each
year, even in sensitive areas like defense [1] or health care [2].
Secure access and confidentiality of data are usually
achieved by means of cryptographic mechanisms. Neverthe-
less, once these mechanisms bypassed or more simply when
the access is granted, data are no longer protected. Here comes
the interest for watermarking, an a posteriori protection, that
leaves access to data while maintaining them protected in
terms of integrity or traceability as example. Watermarking
lies in the insertion of a message (some security attributes) or
a watermark into a host document (e.g., image or database)
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by slightly perturbing host data. More precisely, the insertion
process is based on the principle of controlled distortion of
host data. Watermarking has been successfully applied in
multimedia protection [3]-[5], but database watermarking was
only introduced in 2002 by Agrawal et al. [6]. Since then,
several methods have been proposed [7]-[9].

Depending on the embedding modulation, we can distin-
guish “attribute-distortion-free” methods, that do not modify
attributes values from “attribute-distortion-based” methods.
The former are usually based on the modulation of the order
of tuples within a relation [10]. If one may consider that no
data perturbation has been introduced, such a technique makes
the watermark dependent on the way the database is stored,
inducing constrains on the database management system. As a
consequence, the application range this family of methods can
be used for is limited. Moreover, these methods are fragile as
any reordering of tuples will eliminate the watermark.

For the second class of methods, it is generally assumed
that the normal interpretation of data will not be perturbed if
some alteration (e.g., modification of attributes’ values [11]) is
carried out in the database for message insertion. Nevertheless,
in order to take into account watermark imperceptibility,
most recent “distortion based” schemes consider distortion
constraints. For instance, in [7] the embedding process does
not modify numerical attributes if some “data usability condi-
tions”, measured in terms of the mean squared error, are not
respected. Shehab ef al. consider additional attribute statistics
constraints (e.g., mean, standard deviation) on attribute values
and adapt the watermark amplitude by means of optimization
techniques [9]. In a recent work [12], Kamran and Farooq
go one step further. Their watermarking scheme preserves
classification results of a prior data-mining process. To do so,
attributes are first grouped according to their importance in the
mining process. Some local (i.e., for a set of attributes) and
global constraints are then defined in the statistical relations
between attributes (e.g., mutual information, information gain,
etc.). The allowed perturbation of tuples for a set of attributes
is obtained by means of optimization techniques. In [13], the
same authors introduce the concept of “once for all” usability
constraints considering the application framework where a
database is sent to several recipients for different purposes.
In their approach, the constraints are established in terms of
numerical attributes’ mean and standard deviation variations
defined by the data owner and recipients. The more restrictive
set of variations constitute the “once for all” constraints. They
then optimize their detection based on these constraints. If
a recipient has lower distortion constraints, he will receive a
more distorted database leading to a more robust watermark.
In [14], Lafaye et al. consider a query result approach and
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look at preserving the response to a priori known queries of
aggregation, and modulate pairs of tuples in consequence.

As exposed, the above methods focus on preserving the
database statistics (of attributes [9], [13] or in-between at-
tributes [12]) and do not take into account the full database
semantics that should also be preserved. Semantics refer to the
meaning of a piece of information. For instance, let us con-
sider a medical database having two attributes “gender” and
“diagnosis”. There exist a strong semantic relation between
the “gender” value “female” and the value “pregnancy” of
“diagnosis”. It would be incoherent to have “gender”’="male”.
Although statistics may provide hints about the existence of
such semantic links, as they evaluate the dependencies or the
co-occurrences of values in the database, they do not allow
directly identifying such a situation. In general, watermarked
tuples must remain semantically coherent in order to: i) ensure
the correct interpretation of the information without introduc-
ing impossible or unlikely records; ii) keep the introduced
perturbations invisible to attackers. Indeed, an “impossible”
tuple can be statistically insignificant but highly semantically
detectable [15].

To do so, we propose a new semantic distortion con-
trol method which takes advantage of an ontology over the
database scheme. As exposed by Gomez-Perez and Benjamins
[16], ontologies provide a common vocabulary of an area and
define, with different levels of formality, the meaning of the
terms and the relations between them. Ontologies have been
successfully applied in several domains from data extraction
[17] to image annotation and retrieval [18]. To our knowl-
edge, they have not been yet applied to control watermarking
distortion. As we will show, one ontology provides semantic
knowledge or description of the database that can help us to
identify the allowable attribute distortion in a tuple.

Up to now, different modulations have been considered
in order to embed a message into a numerical attribute in
a database. We can cite as examples the modification of
the least significant bits (LSB) [6], the histogram shifting
for categorical attributes [19], the modulation of the relative
position of circular histograms in groups of tuples [20] or
the insertion of fake records [21]. In this work, our distortion
control method is applied in conjunction with an adaptation of
Quantization Index Modulation (QIM) [22]; robust modulation
which in our knowledge has never been considered in database
watermarking. This modulation is used so as to modulate the
relative angle of the center of mass of circular histograms
associated to groups of values of one numerical attribute of
the relation. Moreover, we theoretically prove that the use of
QIM leads to a scheme that is robust to the most common
attacks in the state of the art: tuple insertion and suppression.

The rest of this paper is organized as follows. In Section
IT we present the main steps of a common chain of database
watermarking before explaining how ontologies can be used
in order to control the database distortion in Section III.
We introduce our scheme and the modulation it is based
on in Section IV. In Section V, we theoretically evaluate
the performance of our scheme. We then empirically verify
these theoretical results in Section VI, where our scheme is
evaluated in terms of distortion and complexity in the case

of one real medical database of more than one half million
patient stay records. We also compare it with the methods of
Sion et al. [7] and Shehab et al. [9], two efficient schemes
from the literature in Section VII. Section IX concludes this

paper.

II. A COMMON DATABASE WATERMARKING CHAIN

A database DB is commonly defined as a finite set of
relations {R;},_, .. In this work, for sake of simplic-
ity, we consider a DB with one single relation constituted
of N unordered tuples {t,},_; . each of M attributes
{A41,As,...,Ap}. An attributeyA’n takes its values within
an attribute domain and ¢,.A4,, refers to the value of the n'"
attribute of the u'” tuple. Each tuple is uniquely identified by
either one attribute or a set of attributes, we call its primary
key t,.PK.

Two fundamental stages are considered in most of database
watermarking schemes: message embedding and message de-
tection/extraction. As depicted in Fig. 1, the embedding stage
includes a preprocessing process, the objective of which is to
make the watermark insertion/reading independent of the way
database is stored. It usually consists in the construction of
groups of tuples, creating a set of N, non-intersecting groups
of tuples {G'},_;

Typically, the group number for one tuple n,, is obtained
from the result of a cryptographic hash function applied to its
primary key t,,.PK, concatenated with a secret watermarking
key Kg such as [9]:

n, = H(Kg|H(Ks|t,.PK)) mod N, (1)

where represents the concatenation operator and N, is
the number of groups to build. The use of a cryptographic
hash function, e.g., Secure Hash Algorithm (SHA), ensures
the secure and equal distribution of tuples into groups.

Thus, if N is the total number of tuples in the database, each
group will approximately contain 4~ N tuples. By next, one bit
or one symbol s; of the message 1s ’embedded per group. To
do so, the values of one or several attributes are modified
accordingly to the watermarking modulation retained by the
user. Thus, one may expect to embed a message corresponding
to a sequence of N, symbols S = {si}izl,m’Ng.
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Fig. 1.

Watermark extraction works in a similar way. First, tu-
ples are distributed into the N, groups. Depending on the
watermarking modulation, one symbol is extracted/detected
from each of these groups. If tuple primary keys are not
modified, the knowledge of the watermarking key ensures the
synchronization between embedding and reading stages.
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Fig. 2. Existing connection between a relational database and an ontology.
Dotted and dashed arrows represent ontological relations between concepts
in the ontology. Solid arrows represent connections between attributes or
attributes values and ontological concepts.

III. ONTOLOGY-GUIDED DISTORTION CONTROL

A. Relational databases and ontologies

A relational database aims at providing efficient storage and
rapid access to large amounts of data. As exposed in Sect. II,
it consists of a finite set of relations {R;};—1,... n, Where one
relation R; contains a set of N unordered tuples {t, }u=1,... N,
each of which having M attributes {41, As, ..., Apr}. How-
ever, this data structure lacks of semantic information about
the meaning and links between different attributes’ values
in a tuple. An ontology can be herein useful by offering
additional semantic pieces of information about the database
content. For a specific area of knowledge, an ontology provides
a common vocabulary and defines, with different levels of
formality, the meaning of the terms and the relations between
them [16]. It is composed of concepts, which represent objects
or sets of objects within a domain. Concepts in an ontology
are linked by means of relations that specify hierarchical or
associative interactions between them. Notice that an ontology
can be derived from the database by means of data mining
operations. However, extracted relations represent only a part
of the knowledge one can have about the database content.
Notice also that the ontology itself may contain some a priori
knowledge about concepts and relations statistics, indicating
for example if a concept is rare or frequent.

From this standpoint, each domain value, subset or range
of values of an attribute A; can be associated to one ontology
concept. We depict in Fig. 2 such a mapping considering the
following example. Let us consider a tuple with attributes
“diagnosis”, “age”, ... The value “Alzheimer” in the domain
of the attribute “diagnosis” can be associated to a concept
“Alzheimer” in a medical ontology. This concept is related
to another concept “> 60 years old”, which can be mapped
into a range of possible values for the attribute “age”. From
a watermarking point of view, this semantic relations make
us aware that one attribute age value should not be turned
into a value smaller than 60 in a tuple where the “diagnosis”
attribute value is “Alzheimer”. As exemplified, the value of the
attribute A, in the u*” tuple, i.e., t,.A;, semantically depends
on the set Sy, 4, of values of the other attributes of ¢,, i.e.,
tu{A1, ...y Ar_1, A¢s1, ..., Apr}, or a subset of them.
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Fig. 3. Identification of allowable range Rg:,.a, for an attribute value
ty.A¢ from its links with: a) a value in Sy, 4,; b) two values in Sy, 4,.
In the first case, Ry, .4, corresponds to the union of different intervals. In
the second case, the additional constraints imposed by the second value are
represented as the intersection of the allowable ranges imposed by each value
in Stu LAge

B. Identification of allowable values of a numerical attribute

As a consequence of the assertions exposed in the previous
section, we propose to use the concepts and relations of an
ontology associated to the database in order to identify the
maximum tolerated distortion of its attributes’ values. For
a numerical attribute A, this distortion limit in the tuple
t, is defined by the range of allowable values t,.A4; can
take Rg:, 4,, under the semantic constraints of S, 4,. If
we come back to the previous example, where A; =‘“age”
is an integer, the value ?,.age belongs to an integer range
Rgi, .age imposed by the set Sy, 44 =“Alzheimer”. In a more
general way, if the attribute domain of A; corresponds to
the integer range [Aymin, At masz], the range Rg, 4, can
be defined as the union of N,, different intervals such
as: Rgtu-At, = [Atminl ) Atmuwl] U U[Atminzv,,,g ’ AtmamN,,,g]
and Rgi, A, C [At mins At maz]; set of intervals identified
from the ontology by querying it considering the other at-
tributes’ values in ¢, i.e., S, 4, (see Fig. 3). The knowledge
of Rg:,. 4, will be used as reference to guide the watermark
embedding process. It is possible that such a semantic dis-
tortion control indicates that an attribute is not appropiate for
watermarking. In that situation, an “attribute-distortion-free”
watermarking scheme will be more appropriate (see Sect. I).

It is important to notice that the semantic distortion control
we propose is complementary to any other statistical distortion
control method. For instance, additionally to the ontology
constraints one may aim at preserving the correlation or the
mutual information between attributes. In a more advanced
construction, a global solution associating semantic distortion
control and statistics distortion control, such as the technique
suggested by Kamran er al. [13] can be constructed.

C. Minimization of the number of queries

In practice, the above process requires querying the ontol-
ogy for each tuple in the database. In order to reduce such
a complexity, we propose an ontology preprocessing stage
which takes advantage of the fact that in general two numerical
attributes have relationships in terms of range of values as
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Fig. 4. Example of a correspondence table mapping possible ranges of the
attribute “age” to associated ranges or sets of values for the other attributes
in the relation, in particular the attributes “Systolic blood pressure” and
“Diagnosis”.

illustrated in the previous paragraph, where Rg:, 4, is the
range of possible values of A; in t, under the constraint
Stu Ay

Let us generalize and look at this process from the point
of view of A;. From the above, it appears that one of its
ranges of values is associated to a range or set of values of
the numerical attributes and categorical attributes, respectively,
in S4, (as illustrated in Fig. 3b). Returning to our example
with A; =“age” and as illustrated in Fig. 4, the range of ages
[60,110] can be associated to a range of values [117,145] of
the attribute A;1q ="“Systolic blood pressure” and to a set
of values {Alzheimer, atherosclerosis,...} of the categorical
attribute A, o =“Diagnosis”.

In this context, the preprocessing stage we then propose
to perform before the database watermarking process consists
in the construction of a correspondence table or mapping
between ranges of A, and ranges of attributes’ values in Sy, .
Notice that a range of A; is not necessarily associated to
all the attributes in S,4,. The construction of this table is
based in the execution of inverse queries going from each
value {Val;};=1,. 1 of the domain of A; to those of Sy,.
This results in a set of ranges Val; may belong to under the
constraints of the attributes’ values in S4,.

Figure 4 illustrates such a correspondence table or mapping
for the attribute “age” (to be watermarked) in regard with the
attributes “Systolic blood pressure” and “Diagnosis”. Once the
table constructed, it is used during the watermarking process
and for one tuple ¢,, one just has to look for the values of
St..A, in the columns so as to get all the possible ranges of val-
ues for the watermarked version of ¢,,.A4;. For instance, as seen
in Fig. 4, for the values t,.Systolic Blood Pressure = 113
and t,,.Diagnosis =*Reye’s syndrome”, we have Rg;, qge =
[2,10].

IV. PROPOSED WATERMARKING SCHEME

The proposed scheme is based on QIM introduced by Chen
and Wornell in [22]. In the sequel, we give first QIM principles
in the case of discrete signal watermarking. Then, we expose
how it is adapted to modulate the phase angle of the vector
associated to the center of mass of the circular histogram of
one numerical attribute in one group of tuples so as to embed
one symbol of message.

A. QIM Modulation and Signals

QIM is based on the quantization of the elements (samples,
group of samples or transform coefficients) of a host signal

s'=0

+ —

& } 4 X
|

R S P

o

Fig. 5. Example of QIM in the case where X is a scalar value for
the embedding of a binary symbol. Codebooks are based on an uniform
quantization of quantization step p. Cells centered on squares represent
C1(s?, = 1) while cells centered on circles represent Cp(s?, = 0). Notice
that d = p/2 establishes the measure of robustness to signal perturbations.

according to a set of quantizers based on codebooks in order
to embed the symbols of a message. More clearly, to each
symbol 5" issued from a finite set S = {si,},_, ; the QIM
associates a codebook {ngy}u=0,...,U such that:

Cyi [\Coi =D if u#v )

In order to embed the symbol s/, into one element X of the
signal, this one is replaced by Xy which corresponds to the
nearest element of X in the codebook C': . This process can
be seen as:

Xw = Q(X,s) 3)

where the function @) returns the nearest element to X in
C,: . Notice that the watermarking distortion corresponds to
the distance between X and Xyy. To exemplify this process,
let us consider one pixel X of an image, which may take
its values from a one-dimensional space [0,255]. We divide
this scalar space into non overlapping cells or intervals of
equal size. Each cell is then related to only one codebook
{Csi Yu=o0,...,u s0 as to satisfy (2). Consequently, a symbol s,
has several representations in [0, 255] and @) corresponds to a
scalar quantizer. In the insertion process, if X belongs to a cell
that encodes the desired symbol sz, its watermarked version
Xy corresponds to the centroid of this cell. Otherwise, X
is replaced by the centroid of the nearest cell encoding s?,.
In the extraction, the knowledge of the cell to which Xy
belongs is enough to identify the embedded symbol. This
process is illustrated in Fig. 5 in the case of a binary message,
ie., s, € 0,1 and two codebooks Cy and C; for which the
cells are defined according to a uniform scalar quantization of
quantization step p. In this example, X will be quantized to
the nearest square or circle in order to encode s!,.

An extension of this approach, whose purpose is to re-
duce the distortion, is the Compensated QIM [22] where
a fraction of the quantization error is added back to the
quantized value so as to better manage the watermark robust-
ness/imperceptibility tradeoff.

B. Adapted QIM for attribute circular histogram watermark-
ing

In this work, we modulate the angle of the vector associated
to the center of mass of the circular histogram of an attribute in
a group of tuples. In this section, the steps for the computation
of this center of mass are first evoked before explaining QIM
codebook construction and presenting our complete scheme.
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Calculation of the center of mass: Let us consider the
numerical attribute A; selected for embedding, which takes its
values in the integer range [0, L — 1]. Then, for one group of
tuples G* secretly built as depicted in section II, the histogram
of the attribute A; is calculated and mapped onto a circle.
The histogram center of mass C* of the group G' and its
associated vector V* are computed, as illustrated in Fig. 6(a).
The module and phase of V' can be calculated from its
Cartesian coordinates given by:

Xi = Malssl Zl—O n COb(%)
-1 .
Yi = M;ssi 2imo M Sm(%ﬂl) S

where n; is the cardinality of the circular histogram class [ of
G’ (i.e., when A, takes the integer value /). As a consequence,
the module of V* equals R = v/ X2 + Y2 and its phase, we
also call mean direction p;, is given by:

arctan(Y/X) if X >0
Fif X=0,Y>0 5)
-5 if X=0,Y <0

7+ arctan(Y/X) else

Hi =

In the sequel, in order to embed a symbol s' into a group
G', we modulate the value of ;. Our choice in working with
the circular histogram center of mass stands on the fact that it
provides a more robust embedding space against tuple deletion
and insertion and attributes’ values modification attacks than
conducting embedding directly at the attribute value level.
More clearly, this feature is less sensitive to such attacks. For
instance, the removal of some tuples will not make vary too
much the angular position of the center of mass.

Construction of the codebooks: For sake of simplicity,
the considered message is a sequence of bits S = {0,1}.
Thus, two codebooks Cy and C; are necessary. Another
simplification we make in this work is that only one cell is
associated to each codebook as illustrated in Fig. 6(b). Two
questions need then to be answered: the determination of the
cell’s boundaries and the position of their centroids.

Let us define p as the mean direction of A; calculated
over all the tuples of the database. Based on the fact attribute
circular histograms of tuple groups are all positioned around
this mean direction, we decided to define the cells’ frontiers
as the intersection between p and the unit circle as illustrated
in Fig. 6(b). So in order to encode O or 1 the histogram will
be rotated to the left or to the right of this frontier.

Unlike the previously presented QIM based on uniform
scalar quantization, the centroids Cyo and Cy; of our cells
Cp and C respectively do not correspond to the cell’s center.
This allows us to better refine the imperceptibility/robustness
trade-off. Cyo and Cy; are defined as:

CqOZNJ_A,quzﬂ"_A (6)

where A corresponds to the rotation angle shift, a user
defined parameter that allows controlling the compromise
robustness/distortion. As defined the maximum robustness is
achieved when A = 7 while the maximum distortion is

achieved when A = 7. The main difference of our modulation

Fig. 6. a) Histogram mapping of one group G* onto a circle. The angle of the
vector pointing its center of mass is modulated in order to embed one message
symbol s € 0, 1. b) Codebook cells Cp and C; with their corresponding
centroids Cyo and Cy1 respectively.

with QIM and compensated QIM exposed above stands in the
cell centroid position which is no longer at the cell’s center
and also on the fact the quantization error is not added back
(see Section IV-A).

To sum up, each codebook is then associated to a one cell
(see Fig. 6(b)) defined as:

Co=(u—-mp), Cr=(p,p+m) (7

Message embedding and extraction - Complete scheme:
Let us now consider the embedding of the binary sym-
bol {si}izoy__,,Nq,l = {0/1} into the group of tuples
{G'}ico.... Ng,l.' As stated above, the mean direction value
w; is replaced by the centroid of the cell coding the value of
s%, resulting in . The embedding of a symbol s* = {0/1}
into p; can be synthesized as:

p = p+ (25" = 1)A (®)

where pf” is the watermarked mean direction, A is the rotation
angle shift that allows the rotation of V% so as to align it
onto the cell centroid. This rotation is performed in the linear
domain, i.e., on the attribute histogram, by modifying the
attribute’s values for certain tuples under distortion constraints
(see Sect. III). We come back on attribute modification with
more detail in Section IV-C. Regarding the message extraction
stage, groups of tuples are reconstructed and angles ud°t are
calculated in each group. It is important to remark that the
value of p should be known by the detector in order to
make it possible to reconstruct the dictionaries Cy and C; and
extract the message. u can be sent to the reader as part of the
watermarking key or recomputed from a set of reference tuples
our algorithm would not have watermarked. More clearly, in
this latter case, the embedder does not insert any symbols
of the message into the first groups of tuples, as example,
allowing the reader to retrieve from them the value of p.

At the reading stage, the value of u¢°* can differ from
in case the watermarked database has been attacked. The cell
to which ;¢ belongs allows us to extract the value of s’ in
in the i'" watermarked group of tuples:

st =0 if pdet € Cp, s =1 if pdet € ¢y ©)

C. Linear histogram modification

As exposed, a rotation of the center of mass vector V; can
be performed by changing the values of the attribute A; in a
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certain number of tuples of the group G?. For instance, if we
call o the elementary angle between two consecutive bins of
the circular histogram of A;, a = 2%, modifying p; of « in
the clockwise direction results in adding —1 to the attribute’s
value for every tuple in the group. Notice that +1 (resp. —1)
is the minimal perturbation of an integer value.

In practice, we execute an iterative process so as to modify
the attribute’s values in G* to rotate V* onto C,g or Cy1. In an
iteration, the attribute values in the group are increased of +1
(resp. —1) under the distortion constraints extracted from the
ontology as exposed in section III, so as to rotate positively
(resp. negatively) p;” to make it converge to Cy1 (resp. Cyo).
More clearly, one value is not modified if its modification
results in a violation of the semantic distortion constraints (see
Sect.IIl). One can compute the number n,,,q4s Of tuples to
be modified of the minimal perturbation +1 (resp. —1) in an
iteration. n,,.qs depends on the elementary angle « and the
number of tuples Ng: in the group:

w_(
(‘:u’ S qO|NG1‘)

Nmods = round (10)

As exposed, after each iteration the distance between p"
and Cy; (resp. Cyo) decreases. However because A; is an
integer attribute, being at least modifiable of £1, u;’ may not
reach the codebook cell centroid after an infinite number of
iterations. This is why we introduced a user defined parameter
e, such as our algorithm stops when |ul’ —Co| < €. Notice that
the lowest value e can take depends on the attribute. Indeed,
due to the fact A; is an integer, its circular histogram center
of mass can be rotated of a minimal angle %’T% = a% (.e.,
a modification of £1 of one individual attribute’s value). This
results in a minimum Vejl\}ue of e for this attribute of a half of

a Ng

this rotation, €4, = § 3.

V. THEORETICAL PERFORMANCE

In this section, we theoretically evaluate the performance
of our scheme in terms of robustness against two of the most
common database attacks: tuple deletion and tuple insertion.
As we will show, robustness depends on the number of groups
Ny, the rotation angle shift A (on which depends the codebook
cell centroids), the statistical distribution of the watermarked
mean directions (" as well as on the strength of the database
modifications, i.e percentage of deleted/inserted tuples. Before
entering into details, we first introduce some useful results of
circular statistics.

A. Preliminary Results

Let us consider the circular data distribution of one attribute
6 (i.e., its histogram mapped onto a circle). This can be seen
as the p.d.f f(0) of a discrete random variable ¢ which takes L
values around the circle in the finite set {%’Tl}lzo,m, —1. The
mean direction p of 6 (or equivalently the phase of the vector
associated to the center of mass of 6 circular histogram) can
be estimated based on a finite number of § samples. Based on
the Law of large numbers, it was shown by Fisher and Lewis
[23] that for any circular data distribution f(6) the difference
between the real mean direction and its estimated value tends

to zero as the number of samples used in the estimation tends
to co. With the help of the central limit theorem, they also
proved that the distribution of the mean direction estimator
approaches a normal distribution centered on the real mean
direction of the circular data distribution.
Considering one numerical attribute, a database of IV tuples
and NN, groups, we can obtain the variance O’ii as in [24]
o2
lii = N ;%2 (11)
N!]

g

where: R corresponds to the module of the center of mass
vector (i.e., V%, see Section IV) and 0’? is defined as [24]:

e 2ml

27l
os = ZSiHQ(T)f( I
1=0

The values {QT’TI};:O’ L—1 are the bins of the circular his-
togram attached to the attribute A, and f (QT’”) their corre-
sponding probabilities. Notice that the above normal distribu-
tion assumption of u; is verified in the cases when the central
limit theorem is empirically verified, i.e., Nﬁg > 30 (see [25]

for further details).

) 12)

B. Robustness Performance

Let us consider the watermarking of one numerical attribute
Ay in a database by means of the scheme presented in Sect. IV,
where two unique cell codebooks Cjy and C; with centroids
Cqo = p— A and Cy; = p+ A respectively are used so as to
embed a sequence S of symbols s € {0, 1}. The result of such
an insertion process on the normal distribution of the original
mean direction ;¢ (see Fig. 7 and section IV) is illustrated in
Fig. 8 which gives the p.d.f of the watermarked angles .
One can easily identify the centroids of the codebook cells
as well as the frontier between the two cells (or codebooks)
established by pu.

As exposed in Sect. IV, the modulation of p; is performed
by introducing a controlled distortion into the integer values
of A;. This modification is carried out by means of an iterative
process that stops when |p}” —Cyol < € (resp. |p)’ —Cq1| < €)
with the error € fixed by the user. Thus, contrarily to the QIM,
the p.d.f distribution of 1" does not present only two peaks in
the cell centroids, but two Gaussians centered in Cyo and Cyy
with a variance that depends on the error €, as seen in Fig. 8
in the case s’ is uniformly distributed (i.e., Py = P; = %).

Performance in terms of robustness of our scheme de-
pends on the probability that a group of tuples changes of
embedded symbol after an attack. We propose to compute
these probabilities considering two common database attacks
or modifications: tuple addition or tuple removal. To do so, we
need to express their impact on the p.d.f of the watermarked
angles, i.e., of the random variable p;” given in Fig. 8.

Notice that for the sake of simplicity, we consider in the
sequel that the error ¢, with |ul —Cyo| < € (resp. |u’ —Cy1| <
€), equals zero. We thus make the hypothesis that the p.d.f
Juw () of i is such as:

Py if p! =p—A

Pyif p! =p+A
0 otherwise

Jup (i) = 13)
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Fig. 7. Distribution of the mean direction u; for an exponentially distributed
numerical attribute taking its values in [0, 707] (L = 708) with a number of
groups Ng = 500. As shown, the real distribution obtained by means of the
normalized histogram perfectly fits a normal distribution with the theoretically
calculated statistical moments.
06— T
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Fig. 8. p;’ distribution after the embedding process for an exponentially
distributed numerical attrlbute taking its values in [0 707] (L = 708) with
Ny =500 and A = 2= " = 0.0177, in the case s* is uniformly distributed
(ie., Pg =P = 2)

where Py and IP; are the symbol probabilities (i.e., Py =
Pr(st = 0), Py = Pr(st = 1), Py + P; = 1). Under
this hypothesis, the probability of symbol error PP, is reduced
increasing as a consequence the theoretical robustness of our
scheme. As we will see in the experimental section, € can be
made small enough to reach such performance at the price
however of time computation increase which depends on the
number of iterations of our algorithm (see section IV).

The p.d.f f,»(p’) of the watermarked angles can be
expressed in terms of the conditional p.d.f of p}’ given the
quantization cell Cy or C they belong to. Then, we have:

Juw (i) = Po fuw (15" 15" € Co) + Py fuw (1|1 € Ch)
(14)
The conditional p.d.f of u’ given cell correspond to:
wl, w _ 1 Zf .uzw = LUgq0
up (il € Co) = { 0 otherwise (5)
wl, w _ 1 Zf :u;ﬂ = qu
Fuu (i’ |i” € Ch) = { 0 otherwise (16)

Notice that under the assumption of ¢ = 0, each conditional
p-d.f can be seen as a normal distribution centered in the cell
centroid with a variance equal to zero.

1) Deletion Attack: In this attack, N  tuples are randomly
eliminated. Based on the fact tuples are uniformly distributed
into IV, groups (see Sect. II), we can assume that each group
G' loses in average ]I\\;—‘; tuples. This reduction perturbs the

w

accuracy of pi” which by definition is an estimator of the
attribute mean direction in the group G* (see Sect. IV-B). If
we consider the previously exposed conditional distributions of
1y’ given the cell they belong to, this attack only modifies their
variances, leaving their means unchanged. We can model this
variance modification as the addition of a centered normally
distributed random variable ¢ to the value of 4}”, such as
piet = p + 9.

Due to the fact the tuples in a group have not been
watermarked with the same amplitude or distortion, the impact
of the deletion attack variably depends on each tuple. This
makes impossible to theoretically calculate the value of the
variance ai of 1) and consequently the probability of symbol
error P.. However, we can obtain an upper bound of P,
considering all the tuples in a group are modified with the
same maximum distortion. The variance of v is then obtained
from (17), with o2 (see Sect. V-A) calculated over all the
tuples in the database.

2 03
=y (17)

The resulting conditional p.d.f f, 4t (uf!|u € Co) (resp. C),
i.e., the p.d.f of u,; after watermarking and deletion attack, is
a normal density function given by:

Fuaer (| € Co) ~ N(Cyo,07) (18)
Fuaer (p! | € C1) ~ N(Cqa, )

2) Insertion Attack: In this situation the attacker inserts N;
tuples. Herein, we assume that added attribute values follow
the same distribution as the original un-watermarked attribute
A;. As previously, the fact a cryptographic hash function is
used to construct groups of tuples (see Sect. II) allows us to
consider a uniform distribution of new tuples among these
groups {G'}i—1 . N,- Such an attack can thus be modeled
by a mixture of two populations: the watermarked tuples
and the added un-watermarked tuples with mixture proportion
parameters p; and po such as po =1 — p; with p; = ﬁ,
where NN is the number of tuples in the original database.

The conditional p.d.f f,n (pins|uw € Cp) (resp. Cy), i.e.,
the p.d.f of p; after watermarking and tuple insertion, is a
normal density function. Its mean ;" (resp. /;'"*'1), which
corresponds to the conditional mean given that ;" € Cj
(resp. C1), and its variance o,,ins can be calculated as:

i
;"0 = Elui"* | € Co] = p1Cao + papt (19)
i7"t = Elp | € C1] = p1Cq1 + pap
2
2 2 O
T ins = Do N, (20)
Hi TgR2
The cell conditional p.d.f are obtained as:
St € Co) ~ N (w0, 02)
|t € C) ~ N (™ a2,
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3) Probabilities of error: The robustness of our scheme is
characterized by the symbol error probability IP., that is to say
the probability the symbol of a group changes after an attack.
P, can be determined through hypothesis testing problem with
the following set of hypothesis:

e Hj corresponds to the case s; =0, i.e., u’ € Cp.
e H; corresponds to the case s; =1, i.e., u’ € Cy.

The probability the watermark reader returns the wrong sym-
bol value, i.e., IP., results from the acceptance of Hy (resp.
H,) when the correct hypothesis is H; (resp. Hy). Thus, P,
is calculated as:

IPE :PQPT'(Hl‘H())—f—IPlP’I"(HolHl) (22)

P, can be refined depending on the database attack::

Peger = Po fo, f (i [Ho)dui™ + P [o, f(ui™' )y
P ins = Po [o f (i [Ho)dpi™ + P [o f(i™*[H1)dpi™

(23)

where P, 4¢; and P, ;,, correspond to the probability of sym-
bol error under a deletion and an insertion attack respectively

VI. EXPERIMENTAL RESULTS
A. Experimental dataset and Ontology

The following experiments have been conducted on a test
database constituted of one relation of 508000 tuples is-
sued from one real medical database containing pieces of
information related to inpatient stays in French hospitals.
In this table, each tuple associates fifteen attributes like the
hospital identifier (id_hospital), the patient stay identifier
(id_stay), the patient age (age), the stay duration (dur_stay),
the attribute GHM (patient homogeneous group), the attribute
ICD10 principal diagnosis and several other data useful for
statistical analysis of hospital activities. If age and dur_stay
are numerical attributes, GHM and ICD10 are categorical
attributes. GHM is the French equivalent of the the Diagnosis-
Related Groups (DRG) of the Medicare system in the USA.
Its attribute domain consists in a list of codes intended for
treatment classification and reimbursement. A GHM code
results from a function that takes as input the patient age, the
ICD10 principal and associated diagnostics, the stay duration,
and several others element we can not detail herein due to
space limitation. In this experiment, for sake of simplicity,
we summed up the domain ontology to the relations between
the attribute GHM, age and stay duration. More clearly, our
ontology represents a subset of the rules associated to the
calculation of the GHM codes. For instance, as depicted in
Fig. 9(a), the code “257033: VIH related disease, age lower
than 13 years old, level 3” is related to the group of ages
“Less than 13 years old” which corresponds to a numerical
range (0, 12). Notice that in our implementation, the domain
ontology was implemented in Protégé [26] and queried by
means of the SPARQL query language.

In order to constitute the groups of tuples (see Sect. II),
the attributes id_stay and id_hospital were considered as the
primary key. Two numerical attributes were considered for
message embedding and watermarked independently: patient

(roooow ) [ om ]

Isa —=—==>
LY LY .
1 1 hasAssociatedAgeGroup ------- >
m ~ ; : hasLowerLimit — - - —>
. Less than 13 o
years old o 252033 hasUpperLimit ———
(a)
Age GHM . ) Age GHM
16 060051 Distortion control 16 06C051 a)
81 01M071 83 01M071
06C051:Proceduresin the oesophagus, Age GHM
the stomach and the duodenum, less
than 18 yearsold 19 | 06C051 |b)
83 01M071

04M25T: Flu, short duration
(b)

Fig. 9. a) Example of concepts and relations in the domain ontology used in
the identification of semantic distortion limits. b) Example of modification of
two tuples taking and not into account semantic distortion limits. Semantically
incorrect tuples are highlighted.

age (age) and stay duration (dur_stay). These attributes were
chosen because of the specificity of their distributions. The
attribute age is slightly uniformly distributed, while the attri-
bute dur_stay presents an exponential distribution concentrated
over the lower values of its domain.

Hllustrative example of the ontology interest: An exam-
ple presenting the advantage of controlling semantically the
database distortion by means of an ontology is given in Fig.
9(a). This latter shows an extract of the original database with
only two tuples and the corresponding watermarked database
extracts with and without semantic distortion constraints, i.e.,
tables a) and b) respectively. As it can be seen from table a)
and b), taking into account the ontology avoids the apparition
of incoherent tuples. Indeed, the GHM code 06C051 corre-
sponds to patients younger than 18 years old, if this constraint
is satisfied in table a), this is not the case in table b) where
the watermarked age value is 19 (see the shaded tuple). Such
an incoherent value makes the tuple suspect to an attacker and
can perturb the normal interpretation of data in a subsequent
data-mining process.

B. Performance criteria

The performance of our scheme is evaluated in terms of
statistical distortion, robustness against tuple suppression and
insertion attacks and complexity. In order to get a global vision
of the variation of the attribute’s distribution, we quantify its
statistical distortion through the variations of the attribute’s
mean and standard deviation, the Kullback-Leibler divergence
(Dk1) (see (24)) and the mean absolute error (MAE) (see
(25)) between histograms of the attribute before and after wa-
termark embedding. If we call fi4, and h gwae the histograms
of the original attribute A; and of its watermarked version
Awat respectively, we have:

L-1

Dk (ha, Hh%t) = Z In
1=0

hAt, (Z)

24
hgwar (1) @4

ha, (1)
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=
MAE = -— ZZ; |ha, (1) = hage (1)] (25)
We recall that the attribute’s domain of A; corresponds to the
integer range [0, L — 1] and N is the total number of tuples
in the database. Robustness is evaluated by means of the bit
error rate (BER), i.e., the probability the value of an extracted
symbol is incorrect after attacks, we compute as:

( Si o) Si,det)

Ny ’
Complexity is established as the computation time or more
clearly, the amount of time taken by the execution of the
insertion and the extraction processes. It is important to notice
that all of the following results are given in average after
30 random simulations with the same parameterization but
different group configuration.

Ny

BER = 2i=1

(26)

C. Statistical Distortion Results

As stated above, we evaluate the statistical database dis-
tortion through the variations of the the mean, the standard
deviation, the D and the histogram MAE of the attribute.
These variations mainly depend on the rotation angle shift A
of the center of mass and of the number of tuples per group.
Table I provides the results we obtained for the attribute Age
for a different number of groups N, = 100,500, 1000 and
values of A which are multiples of the elementary angle «
(see Section IV-B). We recall that our test database contains
N = 508000 tuples. The original mean and standard deviation
of Age are 50.078 and 25.236 respectively. As it can be seen
they tend to differ from their original value with the value of
A but the variation remains below 1%. It is the same for the
Dy, and the histograms MAE which quantify the distortion
of the attribute’s distribution. These measures increase with
the number of groups but the augmentation is not significant.
Thus, if our scheme minimizes semantic distortion, it also
induces low statistical distortions and may not bias most data-
mining operations.

In order to evaluate the gain of performance in terms of
distortion when considering our semantic distortion control,
the same experiments were conducted applying our scheme
with the same parameterization but without the ontology.
Obtained results are given in Table II. As we can see, without
semantic constraints the distortion is at least 3 times greater
whatever the criteria.

D. Robustness Results

Robustness or the BER of our scheme against tuple deletion
and insertion attacks mainly stands on the rotation angle shift
A and on the number of tuples per group; this latter established
by the number of groups N, as the number of tuples in
the database N is fixed. In this experiment, the attribute
Age of our test database was watermarked with an uniformly
distributed binary message S considering different values of
A (as multiples of the angle o) and N,. These watermarked
databases were then attacked by tuple insertion or deletion.
The degree of the attack is measured in percentage from 20%

TABLE 1
INTRODUCED STATISTICAL DISTORTION IN TERMS OF MEAN, STANDARD
DEVIATION, KULLBACK-LEIBLER DIVERGENCE (Dk1,) AND HISTOGRAMS
MAE FOR THE ATTRIBUTE AGE, CONSIDERING A TEST DATABASE OF N=
508000 TUPLES FOR DIFFERENT NUMBER OF GROUPS AND VARIOUS
ROTATION ANGLE SHIFTS A. o IS THE ELEMENTARY ANGLE (SEE SECTION
IV-B). MOMENTS’ VARIATIONS ARE INDICATED IN PARENTHESIS.

Number of groups A=« A =20 A =3a

= 100 50.113 (0.06%) | 50.159 (0.1%) | 50.153 (0.15%)

g 500 50.138 (0.11%) | 50.164 (0.17%) | 50.204 (0.25%)
1000 50.158 (0.16%) | 50.194 (0.23%) | 50.227 (0.29%)

H 100 2524 (0.01%) | 25.266(0.11%) | 25.306 (0.27%)

: 500 25233 (0.01%) | 25.258 (0.08%) | 25.304 (0.26%)

& 1000 25.222 (0.05%) | 25.25 (0.05%) | 25.295 (0.23%)

o 100 0.001 0.002 0.004

Qx 500 0.001 0.002 0.004
1000 0.001 0.002 0.004

o 100 236 101 2731071 4541071

%ﬂ 500 2541074 3551074 4821074
1000 31074 3731074 48210%

TABLE II

INTRODUCED STATISTICAL DISTORTION IN TERMS OF MEAN, STANDARD
DEVIATION, KULLBACK-LEIBLER DIVERGENCE (Dkr1,) AND DISTANCE
BETWEEN HISTOGRAMS WITH NO SEMANTIC CONSTRAINTS

Nb.groups A=« A =2« A = 3a

= 100 | 50.2009 (0.24%) | 50.3265 (0.49%) | 50.4003 (0.64%)

S | 500 | 502387 (0.32%) | 50.3247 (0.49%) | 505198 (0.88%)
1000 | 50.3071 (0.45%) | 50.3948 (0.63%) | 50.5141 (0.87%)

z 100 25.2 (0.14%) 25.1865(0.19%) | 25.1878 (0.19%)

: 500 | 25.1797 (0.22%) | 25.1751 (0.24%) | 25.1895 (0.18%)

& | 1000 | 25.1562 (0.31%) | 25.1599 (0.3%) | 25.1753 (0.24%)

5 | 100 0.0188 0.0393 0.0728

QM 500 0.0195 0.0347 0.0632
1000 0.0242 0.0349 0.0557

m | 100 6.11 10~ 1 9.07 10~ 7 0.0011

§ 500 6.41 10~* 8.62 1074 0.0011
1000 7271074 8.75 1074 0.0011

to 99%, i.e., the percentage of tuples added to or deleted from
the protected database. A fixed value of € = 0.0001 was also
considered. Herein, we confront experimental to theoretical
performance we established in section VI-D.

In Fig. 10, we show the BER we achieved in the case of a
deletion attack for two values of IV, and the lowest rotation
angle shift value, i.e., A = «. As it can be seen, experimental
curves are lower than the theoretical BER upper limit we
defined in Section V-B1. However, they tend to this limit along
with the increase of the degree of the deletion attack. Fig. 12
provides more tuple deletion attack robustness results making
varying A and IV,. Obviously, the BER increases along with
the degree of the attack but also with the number of groups.
This is due to the limited size of the database, the more the
number of group increases, the more the number of tuples per
group decreases. In general, decreasing the number of tuples
per group by mean of a deletion attack or a high number
of groups directly impacts the mean direction estimation and
consequently the robustness of the scheme. At the same time,
the higher the value of A, the further the codebook cell centers
are (see section IV-B) and the greater the robustness is.

Similar experiments were conducted regarding the tuple
addition attack. As in section V-B2, where we theoretically
established the BER, new added tuple attributes’ values follow
the original distribution of the attribute. Results are provided
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=100 groups
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Bit error rate

QA emt T
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Deleted tuples(%)

Fig. 10. Tuple deletion attack - BER obtained for the attribute Age
considering A = « and N; = 100 and 1000 groups. Theoretical and
experimental results are depicted indicated with a dashed and solid lines,
respectively.
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Fig. 11.  BER for the attributes age and dur_stay with N, = 1000 and

A = « considering the tuple deletion attack (left) and the tuple insertion
attack (right).

in Fig. 13. First, it can be seen that experimental results fit
theoretical ones. A little error can be seen, which is related
to the hypothesis we made in section VI-D with € equals 0.
Beyond, as in the previous attack, the BER decreases with the
increase of A, and increases along with the number of groups.
Notice also, that our scheme better resists to the addition attack
than the deletion attack. This is due to the fact that the addition
attack only increases the variance of the p.d.f. of p” while the
deletion attack impacts also its mean.

A third experiment was conducted so as to evaluate the
influence of the attribute distribution itself. To do so attributes
age and dur_stay were watermarked using the same number
of groups IN; = 1000 and rotation angle shift A = a. As
depicted in Fig. 11, the BER obtained for the attribute dur_stay
is the lowest one due to its low dispersion around its mean
values, which makes its mean direction more stable faced to
the addition or suppression of tuples.

Finally, we have also evaluated the robustness of our scheme
against two common attribute value modification attacks: i)
Gaussian noise addition attack ; ii) uniform noise addition
attack. Considering the watermarking of the attribute age, the
first attack was parameterized with a standard deviation o = 2
and the latter with an amplitude in [-4; 4]. Notice that, with
such a parameterization, both attacks can be considered as
“strong” in our experimental framework. For a capacity or
number of groups N, = 1000 and A = «, we obtained
a BER~ (.04 in the first case and BER~ 0.09 in the

second. These BERs are small and will decrease for smaller
and higher values of N, and A, respectively. Thus, we can
conclude that our scheme is highly robust against attribute
value modifications.

E. Computation Time

The computation time of our scheme depends on the
construction of groups of tuples, on the identification of the
allowable distortion and the watermark embedding/extraction
processes. The complexity increases along with the number of
tuples in the relation, i.e., N. However, the complexity of the
allowable distortion identification task is in addition dependent
on the number of attributes considered for watermarking and
of the number of attributes semantically connected with them
(complexity of the ontology queries).

In this experiment, the attribute Age was considered for
embedding. It is important to notice that all the following
computation times are those of an implementation of our
scheme made with Matlab® running on a Inte]l® Xeon®
E5504 running at 2Ghz with 3GB of physical memory and
four cores. Table III evaluates the elapsed time for the first
two tasks for several values of IV. It can be seen that the time
increases linearly with N and with the number of attributes
semantically connected with the one to be watermarked.

The complexity of the insertion process depends on the
number of groups NN, on the value of A and the value of
the error € manually fixed by the user. The smaller € is, the
more iterations our scheme will have to make to reach this
value. On its side, the extraction stage complexity is essentially
related with the number of groups. Indeed, once the groups
reconstituted one just has to interpret their center of mass val-
ues to decode the message. Results for both stages processes
are given in Table IV. It can be observed that the extraction
complexity increases with the number of groups only. The
insertion computation time increases also with A. Indeed, our
scheme iteratively modified the tuples of one group so as to
reach the codebook cell centroid which encodes the desired
bit under an epsilon value constraint. In order to evaluate the
influence of the value of € on the computation time, we insert
a watermark into the attribute age considering Ny = 500 and
A = « and several values of e. Results are depicted in Fig.
14. As expected, the computation time inversely grows with
¢ until reaching an asymptote in ¢ = 2.79 - 10~°. This later
value is directly related to the definition of the attribute age,
an integer variable (see Sect.IV-C).

TABLE III
COMPUTATION TIME FOR THE IDENTIFICATION OF SEMANTIC DISTORTION
LIMITS AND THE CONSTRUCTION OF GROUPS USING MATLAB®

Identification N = 200000 N = 400000 N = 500000

One attribute 3.54s 4.63s 4.98s

Two attributes 6.97s 9.15s 10.72s

Group creation | N = 200000 | N = 400000 | N = 500000
67s 134s 170s
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Fig. 12. BER for the attribute Age with different rotation angle shifts A taking Ny = 100, 300, 500, 700 and 1000 groups for a tuple deletion attack.
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Fig. 13. BER for the attribute Age with different rotation angle shifts A taking N, = 100, 300, 500, 700 and 1000 groups for a tuple insertion attack.

Theoretical and experimental results are depicted indicated with a dashed and solid lines, respectively.

TABLE IV
COMPUTATION TIME FOR THE INSERTION AND THE DETECTION STAGES
FOR THE ATTRIBUTE AGE WITH € = 0.0001 USING MATLAB®.

Insertion | N, =100 | N, =500 | Ny = 700
A=« 2s 8.5s 11.3s
A =2« 2.7s 10.4s 14s
A = 3a 3.5 12.35s 17s
A =4da 4.05s 14.2s 19.6s
Detection | N, =100 | N, =500 | Ny = 700
0.3s Is 1.3s
20
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Fig. 14. Computation time for the attribute Age with A = « taking Ny =
500 and several values of €. The vertical solid line represents the asymptotic
value of e for this attribute..

VII. PERFORMANCE COMPARISON RESULTS WITH STATE
OF ART METHODS

As exposed in Sect. I, distortion control methods one can
find in the literature are based on statistical criteria. As

example, most recent schemes take the attributes’ mean and
standard deviation variations [9], [13], the mean squared error
[7] as well as attributes values co-occurrences (evaluated in
terms of the correlation, the information gain and so on)
[12] as constraints. Even though these statistical aspects are
linked to the database semantics, they represent only a part of
the knowledge attached to the database content. For instance,
the modification of the age of a newborn can be statistically
insignificant but it will be easily pointed out by means of
a semantic analysis. Our semantic distortion control allows
avoiding such a situation. In a more general way, it completes
the statistical distortion control.

Based on this statement and for fair comparison, we decided
to compare our scheme with the ones of Sion et al. [7]
and Shehab er al. [9] (two efficient robust methods) under
statistical distortion constraints only. By doing so, we only
compare our scheme based on the adapted QIM without
considering ontology based semantic distortion control (see
Sect. IV) with these two approaches.

The method by Sion et al. is based on the modification
of the attribute value statistics in a group of tuples G* so
as to embed one bit s* = {0,1} of the message S (see
Sect. II). To do so, a threshold value is first derived from
G': Tr = avg + co, where avg and o are the mean and
standard deviation values of A; in G* and ¢ € (0,1) is a
user defined parameter. The embedded bit value is encoded
depending on the number v, of watermarked attributes values
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over or under this threshold. More clearly, for a group of
N, tuples, a bit value 0 is embedded if v, < Nwyigise
and a bit value is embedded if 1 if v, > N;Vspue Where
Virues Vfaise € (0,1) are used defined parameters exploited so
as to control watermark robustness. At the reading stage, the
message is extracted simply by verifying if v, is greater than
NiVypye or smaller than Nyvyqs.. At the same time, [7] was
slightly modified, without changing intrinsically the strategy
they follow, so as to adapt the construction of groups to the
one the other schemes use. In the method of Shehab et al.
[9], watermarking is presented as a constrained optimization
problem, where a dissimulation function © is maximized or
minimized depending on the bit value to embed in a group of
tuples. Optimization space is limited by the quality constraints
set. In the example given by the authors, © represents the
number of elements the value of which exceeds a certain
threshold defined as in [7] Tr = avg + co. At the detection,
the value of © is calculated and the detected bit is a 1 (resp. 0)
if the obtained value is greater (resp. smaller) than a threshold
T. The value of T is calculated so as to minimize the BER.

In the following experiments, 506800 tuples of the attribute
age of mean 50.078 and standard deviation 25.236 were
watermarked and the same statistical constraints, allowing a
change in data values within £10 percent were considered
for all methods. We considered a watermark S of 500 uni-
formly distributed bits and, consequently, a number of groups
N, = 500. All schemes were parameterized so as to ensure
a similar distortion in terms of mean and standard deviation,
that is to say: ¢ = 0.85, Vfqse = 0.05 and v4pye = 0.09
for [7]; ¢ = 85 for [9]; and a rotation angle shift A = 1 for
our scheme. As in the previous section, results are given in
average after 30 random simulations.

A. Attribute P.D.F preservation

Although all the methods preserve the attribute’s mean and
standard deviation, they do not have the same behavior in
preserving the attribute’s p.d.f, as shown by the Dxkr, and the
MAE criteria in Table V. [9] provides the best results but
at the price of a very high complexity due to the use of an
optimization process (see below).

TABLE V
DISTANCE BETWEEN DISTRIBUTIONS IN TERMS OF THE Dk, AND THE
MAE FOR OUR SCHEME AND THE METHODS PROPOSED BY SION et al. [7]
AND SHEHAB et al. [9].

Method Dxki, MAE
Sion et al. [7] 0.0805 0.00218
Shehab e al. [9] 1916 10~% | 561910°°
Proposed Method 0.0024 2.8288 10~ %

B. Robustness

With the same parameterization, three attacks were consi-
dered so as to evaluate algorithms’ robustness: insertion and
deletion of tuples and attributes values modification. All of
them were performed impacting a percentage of tuples in the
range 20% — 99%. The attribute modification consisted in the
addition of a centered Gaussian noise of std. dev. o = 2.

As depicted in Table VI, our method performs in general
better than [7] and [9], being [7] the worst solution. [9]
provides a better robustness than our method in the case of a
suppression attack only. In the case of an attribute alteration
attack, our scheme provides a BER 100 times smaller than [9].
Here is the interest of working with the angular position of the
center of mass. It also achieves better performance regarding
the tuple insertion attack.

TABLE VI
BIT ERROR RATE FOR OUR SCHEME AND THE METHODS PROPOSED BY
SION et al. [7] AND SHEHAB et al. [9] FOR VARIOUS ATTACKS.

Deletion 20% 40% 60% 80% 99%
Sion et al. [7] 0.2643 0.3183 0.3453 0.3875 0.4387
Shehab et al. [9] 0.0652 0.0776 0.0944 0.1548 0.464
Proposed Method 0.0434 0.1208 0.2041 0.3053 0.4624
Insertion 20% 40% 60% 80% 99%
Sion et al. [7] 0.487 0.4932 0.5 0.5 0.5

Shehab et al. [9] 0.074 0.0956 0.1268 0.1776 0.218
Proposed Method 0.0263 0.0721 0.1104 0.1449 0.1656
Modification 20% 40% 60% 80% 99%
Sion et al. [7] 0.5 0.5 0.5 0.5 0.5

Shehab et al. [9] 0.1192 0.134 0.2392 0.4386 0.4804
Proposed Method 0.0028 0.0031 0.0039 0.0043 0.0037

C. Complexity

Computation time is used so as to evaluate the complexity
of these approaches. Regarding the embedding process, it is
conducted in about 3s with our method and the one by Sion
et al.. It takes about 4 hours to [9], due to its optimization
process. The detection stage duration is approximately the
same in all cases, being of less than 3s.

To sum up, our approach provides better robustness perfor-
mance than the scheme of Sion et al. [7] and it introduces
less statistical distortion. Regarding the scheme by Shehab
et al. [9], our scheme is more robust against tuple insertion
and attribute’s values modification attacks. It introduces more
distortion in terms of the distance between distributions but is
of a much lower complexity.

VIII. DISCUSSION

The security of the proposed scheme stands on the construc-
tion of groups of tuples. This task is conducted by means of a
cryptographic hash function, e.g., SHA, which takes the secret
watermarking key Kg as an input. This procedure ensures
that, in the absence of Kg, it is impossible for an attacker to
correctly reconstruct the groups of tuples and consequently,
to extract the sequence S. Thus, the only way he or she has
to erase the watermark is by modifying attributes’ values or
deleting a set of tuples from the database.

The use of an ontology improves the watermark imper-
ceptibility/masking. It is important to notice that the more
visible the watermark, the easier for an attacker to identify
the watermarked tuples. The ontology indicates the set of
semantically coherent values the embedder can use when
watermarking/modifying an attribute in a tuple so as to keep
this modification invisible to an attacker. This domain ontology
is public, i.e., a priori known of everyone. Indeed, a user
that regularly exploits a database will learn with time the
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relationships that exist between its attributes’ values. Beyond,
the ontology can also serve to identify incoherent tuples
introduced by any watermarking scheme that does not take
care of the semantic interpretation of records. Such incoherent
records can help the attacker by providing clues about the
presence of a watermark or of the scheme that has been used.

Notice that after our ontology based semantic analysis, the
number of watermarkable tuples can be reduced, impacting
the watermark robustness. Even though in this work tests have
been performed considering only one attribute, we recommend
watermarking several attributes in a relation. Using several
attributes at the same time for message embedding will in-
crease the watermark robustness. One can for example repeat
the message in different attributes and use majority vote at
the reading stage. This solution will require the user to store
the attributes’ mean values and to send them to the watermark
reader as part of the watermarking key (see Sect. IV-B). In the
case several attributes are watermarked at different time, by or
for different users, multiple watermarking keys will have to be
managed. In order to overcome this issue, an alternative we
propose in Sect. IV-B is to make possible that the watermark
reader retrieves the attributes’ mean values by itself. This
can be achieved by not watermarking some secretly selected
tuples, i.e., tuples the attributes of which are not modified
by the embedding process and that can be retrieved and used
by the reader for attributes’ mean-values computation. In the
extreme case where none of the attributes are semantically
watermarkable, one must consider the use of distortion free
schemes [10] (see Sect. I).

IX. CONCLUSION

In this paper, we have proposed a new robust database
watermarking scheme the originality of which stands in a
novel semantic distortion control method and a QIM adapted
to the modulation of attributes’ circular histograms. As we
have shown, semantic distortion control aims at two main
objectives: i) ensure the correct interpretation of the infor-
mation contained in the database, by preserving the semantic
links in between attributes values. ii) make the watermarking
invisible to an attacker. Our method is suitable to be combined
with existing methods that include statistical distortion control.
Message embedding is performed by application of QIM to the
center of mass of circular histograms for a numerical attribute.
It is robust against most common database attacks: tuple dele-
tion and insertion as well as attributes’ values modification.
Our scheme is appropriate for copyright protection or traitor
tracing, embedding for example a user identifier. In addition,
we have theoretically established and verified experimentally
the performance of our method in terms of robustness. The
proposed results allow the user to correctly select our scheme’s
parameters under constraints of robustness and capacity.
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