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Abstract—In this paper, we focus on the “blind” identification 

of the Computed Tomography (CT) scanner that has produced a 

CT image. To do so, we propose a set of noise features derived 

from the image chain acquisition and which can be used as 

CT-Scanner footprint. Basically, we propose two approaches. The 

first one aims at identifying a CT-Scanner based on an Original 

Sensor Pattern Noise (OSPN) that is intrinsic to the X-ray 

detectors. The second one identifies an acquisition system based 

on the way this noise is modified by its 3D image reconstruction 

algorithm. As these reconstruction algorithms are manufacturer 

dependent and kept secret, our features are used as input to train 

an SVM based classifier so as to discriminate acquisition systems. 

Experiments conducted on images issued from 15 different 

CT-Scanner models of 4 distinct manufacturers demonstrate that 

our system identifies the origin of one CT image with a detection 

rate of at least 94% and that it achieves better performance than 

Sensor Pattern Noise (SPN) based strategy proposed for general 

public camera devices. 

 
Index Terms—Image origin identification, Computed 

Tomography, Sensor Pattern Noise, 3D Image reconstruction 

algorithm.  

 

I. INTRODUCTION 

HE rapid development of internet and digital technologies 

brings increasingly more digital medical data to patient 

cares. That is the case of medical images that are produced by 

various medical imaging apparatus and shared in a wide variety 
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of applications ranging from daily medical practice to 

telediagnosis up to telesurgery [1]. If image distribution and 

manipulation are easier, security issues in terms of 

confidentiality, availability, reliability and traceability are also 

increased [2]. In this paper, we focus on the particular problem 

of Computed Tomography (CT) image origin identification, 

that is to say being able to show a CT image has been produced 

by a specific CT-Scanner system. Even though the standard for 

medical image storage and transfer, DICOM (Digital Imaging 

and Communications in Medicine - medical.nema.org), traces 

image modifications and transmissions by means of 

"indicators" in the image file header [3], these indicators are 

prone to manipulation and information loss. Such a 

modification can easily be conducted with the help of medical 

image software freely available [4]. As a consequence, one may 

doubt about the real image origin. 

To overcome this issue, one can digitally sign an image [5] or 

watermark it with a proof of its origin [6]. In digital signature 

based schemes, a hash of the image is captured and 

asymmetrically encrypted for non-repudiation purpose [7] and 

transmitted along with the image. At the reception, if the 

attached signature does not match the recomputed one, the 

image integrity and origin are not correct. Watermarking based 

verification techniques consist in embedding into the image an 

identifier of the modality which issued it [2]. If the embedded 

message is not valid or retrieved, an alarm will be raised [8]. To 

be efficient, these hashing or watermarking schemes need to be 

implemented inside the image acquisition device [9, 10]. This 

may limit their use in real practice. 

To go further, a question is how to verify the origin of a given 

CT image, i.e., identifying the model/brand of the CT-Scanner 

system that issued it, only from its pixels’ gray values. To 

answer this question one can take advantage of digital forensics 

approaches which focus on origin identification, integrity 

verification and authentication of data [11]. Most of these 

techniques have been proposed in the case of general public 

devices (e.g. cameras, optical scanners or mobile phones) [12]. 

They can be distinguished into two classes. Methods of the first 

class analyze the image acquisition chain in order to identify 

characteristics that are specific and unique to it. As example, 

processes such as Color Filter Array (CFA) interpolation [13], 
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demosaicing algorithms [14], white balancing algorithms [15] 

or JPEG compression [16] leave specific signal distortions that 

can be used for device identification. Some other works explore 

classifier-based strategies to put in evidence statistical image 

footprint. Finding suitable image features is the key point of 

these approaches. Some of them correspond to color features, 

image quality features and image characteristics in the 

frequency domain [17-19]. One problem of such a technique is 

that manufacturers usually make use of the same processes in 

their different device models. That is especially the case of 

general public devices making hard to identify a device 

uniquely. 

Regarding the second class of methods, the interest is given 

to physical phenomena that are inherent to the acquisition chain 

components and which can be used as device footprint if 

correctly captured. This is the case, for example, of lens 

distortions [20] and sensor imperfections [21]. In [22], in the 

case of raw images (i.e., non lossy compressed image), Thai et 

al. established a two parameter noise model with the likelihood 

ratio test (LRT) that clearly differentiates the camera that has 

acquired an image. Lukas et al. were the first to introduce a 

forensic technology based on Sensor Pattern Noise (SPN) [23]. 

SPN is defined as any noise component that is intrinsic to 

sensor and cannot be eliminated by averaging. Due to sensor 

manufacturing imperfections, pixel values vary from a sensor 

to another under the same illumination. The photo response 

non-uniformity noise (PRNU) is the main SPN component. It is 

generated by the camera Charge Coupled Device (CCD) and 

can serve as unique camera footprint [24]. PRNU based 

identification consists in computing the PRNU footprint of a 

device and detecting it into an image by means of correlation 

measurements. Obviously, the efficiency of these methods is 

dependent upon the ability to reliably extract such noise from 

images. To our knowledge, only two works have focused on 

medical image origin identification. In [25], Duan et al. 

demonstrated the existence of a Digital Radiography Pattern 

Noise (DRPN) footprint for digital radiography images. 

Kharboutly et al. experimentally expanded this approach to 

CT-Scanner [26]. The footprint they proposed is computed 

from one CT volume. It corresponds to the average of SPNs 

extracted from each volume slice. 

In this work, we explore a novel approach which takes 

advantage of the principle of CT-Scanner acquisition system. 

We suggest extracting the Original Sensor Pattern Noise 

(OSPN) from a CT image by inverting back the 3D image 

reconstruction process. Based on this OSPN we show it is 

already possible to identify the CT-Scanner that has issued an 

image with good accuracy and better performance than with 

SPN based strategies proposed for general public devices. 

Then, we propose a set of features which allow distinguishing a 

CT-Scanner depending on its 3D image reconstruction 

algorithm. As these algorithms are manufacturer dependent and 

kept secret, we use these features as input of a classifier we 

train so as to differentiate CT-Scanners. We further show that 

the combination of these two approaches leads to better origin 

identification performance. 

The rest of this paper is organized as follows. In Section II, 

we recall the basic principles of CT-Scanners and the main 

noise components that are inherent to CT images. We also 

briefly introduce the most common 3D image reconstruction 

algorithms. Our OSPN and 3D image reconstruction algorithm 

footprints are presented in Section III. Experimental results 

conducted on images issued from 15 different CT-Scanner 

models of 4 distinct manufacturers, while considering various 

anatomical objects, are provided and analyzed in Section IV. 

Conclusions are drawn in Section V.  

II. CT-SCANNER NOISE AND PRINCIPLES OF CT 3D IMAGE 

RECONSTRUCTION 

A. Basic Principles of CT-Scanner System 

The basic principles of X-ray CT-Scanners have not changed 

from the early days [27, 28]. As schematically depicted in Fig. 

1, they consist of a fan-beam X-ray source and a detector array 

rotating around the patient. CT-Scanner systems make use of 

these X-ray projections taken from different directions to 

produce cross-sectional anatomy image of specific areas in a 

patient’s body. The formation of the CT image involves 

therefore two steps: the projection process and the 

reconstruction process. A CT-Scanner system starts by a 

projection process where, while going around a single axis of 

Computer

system
Monitor

X-ray Tube

Bowtie Filter

Flat Filter
X-ray Detector Array

Projection Process

Reconstruction Process

Projection Data CT Image

Patient

Storage

 Image display, storage， 

communication

 
Fig. 1.  Basic principles of a CT-Scanner system. 



 

 

rotation, X-Rays are emitted and read out by an X-Ray detector 

array after having passed through two distinct filters and the 

patient. These radiographic projection data, acquired from 

different rotation angles (notice that several hundreds of views 

are used), are then provided to a tomographic reconstruction 

algorithm in order to build the final CT tomographic image 

volume that can be next displayed on a monitor for diagnosis, 

stored and communicated. The basic principle of this 

reconstruction process is illustrated in Fig. 2, where each 

projection sample in a view can be seen as the sum of a 

particular group of pixels’ values in the CT image along one 

direction. The objective is to find the pixel values by solving a 

system of linear equations, one per angle. Although simplistic, 

we invite the reader to keep in mind this 3D image 

reconstruction algorithm illustration, as in the sequel this 

process will have to be inverted in order to extract the inherent 

noise of the X-Ray Detector array from the image.  

Beyond this simple back projection technique, many 

improvements in hardware technologies, system design as well 

as in reconstruction algorithms have been brought over the past 

two decades. If the fan-beam axial Filtered Back Projection 

algorithm (FBP - where projection data are filtered before being 

back projected for image quality improvement) was the major 

mode of reconstruction for a long time, the helical or spiral CT 

using a detector array with up to 256 rows (i.e. multislice CT) 

forces the design of new reconstruction algorithms based on 

cone-beam geometry. All these advances lead to faster isotropic 

volume acquisition, higher spatial resolution and better image 

quality. In parallel, with the progress in computer resources, 

iterative reconstruction methods now challenge the FBP 

approach as advocated in [29, 30] due to their ability to 

incorporate models of the physical process or other prior 

information. Nevertheless, much more still remain to be done 

when considering the inherent polychromatic nature of the 

energy spectrum of X-Ray tubes, the non-linear effects such as 

scatter or beam hardening, the statistical fluctuations of X-Ray 

flux on each projection sample over a short sampling duration 

(less than a millisecond on recent scanners) to which the 

electronic noise must be added. Notice that each CT-Scanner 

manufacturer develops its own tomographic reconstruction 

algorithms. As exposed above, each CT-Scanner model has its 

own reconstruction algorithm. These algorithms are kept secret 

as they are important elements of the system added value.  

 

B. CT-Scanner Pattern Noise Modeling 

Modelling the noise distributions in the projections is not 

straightforward because the CT projection raw data undergo 

manufacturer-specific pre-processing and calibration processes 

before its use in the reconstruction. This noise is further 

modified by the 3D image reconstruction process. Given the 

limited scope and the focus of this paper, we have retained the 

noise model proposed in [25] for DR systems 

j j jP E K E Q                                 (1) 

where Pj corresponds to the projection data at the angle j; Ej is 

the “X-Ray” entered into the system (see Fig. 3);  KEj denotes 

the Gaussian noise inherent to the X-Ray detector array in the 

j
th

 projection (a 1D vector in the sequel); Q is the sum of other 

residual noises. K is the Original Sensor Pattern Noise factor we 

are interested in. We will estimate it through the noise terms  

KEj  in different projections.  

    The choice of this model was also guided by the fact that 

although the major manufacturers are using similar analytical 

or iterative reconstruction methods, they remain black boxes. 

x11 x12 x13

x21 x22 x23

x31 x32 x33

p11

p13

p21 p22 p23

p33

p32

p31

p12

11 12 13 11

21 22 23 12

31 32 33 13

11 21 31 21

12 22 32 22

13 23 33 23

31 31

11 22 33 32

13 33

x x x p

x x x p

x x x p

x x x p

x x x p

x x x p

x p

x x x p

x p

  


  

   


  


  
   





  
 

 
Fig. 2.  Illustration of CT 3D image reconstruction. pij and xnm are projection and 

pixel values, respectively.  
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Fig. 3.  Generation of projection data. 

 

Fig. 4.  Slice of 3D image volume having as input the same Gaussian noise. They result from basic 3D image reconstruction algorithms: R1 - simple back projection; 
R2 - inverse radon transformation; R3 - filtered back projection; R4 - 2D Fourier transformation; R5 - back projection using 1D Fourier transformations and central 

slice theorem. 

  



 

 

Sufficient information on the underlying algorithms and 

implementation is missing and most system parameters are 

unknown. Nevertheless, and as we will see, it is possible to 

discriminate the origin of one CT image by using the model in 

(1) and by training some classifiers. 

III. CT-SCANNER IDENTIFICATION 

In this section, we describe how to calculate the footprints 

we propose in order to identify the CT-Scanner that has issued 

an image using the Original Sensor Pattern Noise and a set of 

standard CT-Scanner 3D image reconstruction algorithms.  

A. CT-Scanner Identification based on OSPN Extraction 

As discussed in Section II, we first aim at extracting the 

OSPN of an image. In order to give the reader an idea of what 

looks like the original noise into the reconstructed image, we 

generate a Gaussian noise n to simulate the noise term KEj in 

(1). In the following simulation n is constituted of 512 samples 

due to the fact that one row of most common X-Ray detector 

array is constituted of 512 elements. We have then applied 5 

different reconstruction algorithms Ri, i = 1, …, 5, having as 

input these noisy projection data with views acquired every 1 

degree angle from 1 to 180 degree, that is to say: 

( , 1, ,180)Ri i jI R P j                           (2) 

where Pj = KEj  = n, j = 1, 2, …, 180, RiI is the image of 

512×512 pixels obtained with the analytical reconstruction 

algorithm Ri. The five algorithms we considered are: R1- simple 

back projection; R2- inverse radon transformation; R3- filtered 

back projection; R4- 2D Fourier transformation; R5- back 

projection using 1D Fourier transformations and central slice 

theorem. The reader interested in these reconstruction 

techniques may find the essence of the above algorithms in [27, 

28].  

We give in Fig. 4 some image samples we obtained with the 

same Gaussian noise n as input, that is to say considering only 

as input the noise inherent to the X-Ray detector array. We 

recall that this noise is unique to a sensor and that it 

consequently exists in all projections (see section II. B). One 

can see that the reconstructed noise depends on the original 

sensor noise and also on the reconstruction algorithm. 

The strategy we follow in order to get the OSPN of one real 

CT image is illustrated in Fig. 5, considering 180 acquisition 

angles only. Its different steps are: 

1)  Extraction of the CT image noise by means of image 

filtering. This noise corresponds to the difference between the 

original CT image Y and its denoised version F(Y):  

                                 ( )N Y F Y                                  (3) 

Note that N is the image noise. In our implementation, F() is 

a wavelet based filter as proposed in [26] for CT image origin 

identification so as to conduct a fair comparison performance 

in section IV. As an aside, notice that N is considered as the 

image SPN in [26], it is a 2D matrix of same dimension as that 

of the image. 

2) Estimation of the projection noise Oj, j = 1, 2, …, 180, from 

the noise image N. Oj 
is an estimator of the noise term KEj in 

(1). This task is conducted by inverting the back projection 

algorithm process (i.e. direct projection of image voxels onto 

the detector row – see Section II.A). By doing so, Oj is a 1D 

vector of 1512 samples. 

3) Calculation of the average angle noise Oavg 
180

1

1

180
avg j

j

O O


                                       (4) 

By doing such an average, we expect to enhance the fixed 

component of the sensor pattern noise. In the sequel Oavg 

corresponds to the image OSPN.  

 

From this standpoint, the identification of one CT image 

origin simply consists in extracting its OSPN following the 

above steps and comparing it with the a priori known OSPN of 

a given CT-Scanner. This comparison is established by means 

of correlation measure : 

                        
cov( , )

( , )

avg

avg

avg

O O

O O
corr O O

 
 


              (5) 

where O is the OSPN of one CT-Scanner, we identify as 

“reference OSPN” in the sequel, and Oavg the OSPN extracted 

from the CT image under observation, cov( )  is the covariance 

operator, O  and 
avgO  are the standard deviations  of O and 

Oavg, respectively. This correlation  is used as a measure of the 

similarity to classify the CT-Scanners. An experimental 

threshold can also be determined, in which case, the tested 

OSPN corresponds to the reference OSPN of a scanner. The 

scanner the reference OSPN of which gives a correlation value 

higher than the threshold is chosen as the origin CT-Scanner 

[25].  

 

B. 3D Image Reconstruction Algorithm Identification  

Herein, our basic objective is to identify the image 

reconstruction algorithm used by a CT-Scanner. Let us come 

back to our previous CT reconstruction simulation framework. 

As shown in Fig. 4, one can see that the reconstructed noise not 

only depends on the sensor noise, but also on the reconstruction 

algorithm. It is symmetric and has some periodicity and strong 

similarities for different angles. As a consequence, the features 

we proposed to extract from the noise image aim at putting in 

evidence such periodicity and similarity to discriminate the 
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Fig. 5.  Image OSPN extraction. 

  



 

 

different reconstruction algorithms. 

The procedure we propose in order to get these features is 

illustrated in Fig. 6. For one CT image, its different steps are: 

1)  Following the steps 1 to 3 of the OSPN extraction 

procedure to extract the image OSPN Oavg.

2)  In order to evaluate the noise similarity characteristics 

attached to a reconstruction algorithm, we compute a set 

of correlation measures C(j), j = 1, 2, …, k,  in-between 

projection angle noise estimates Oj, j = 1, 2, …, k, and the 

average angle noise Oavg, i.e., the image OSPN. 

 
   

( ) , , 1, ,
avg avg j j

avg j

avg avg j j

O O O O
C j corr O O j k

O O O O

  
  

  
 (6) 

where avgO  and jO  are the average of Oavg and Oj, 

respectively. In this work, the value of k is fixed to 180. 

These correlation measures help to capture the noise 

periodicity caused by the image reconstruction process. They 

are regrouped within a vector C of 1k components. C 

constitutes the 3D image reconstruction algorithm footprint. It 

will be used to discriminate reconstruction algorithms. 

Because we miss of technological and processing 

information from the CT providers, we propose to use this 

vector of features as input of a classifier. In the sequel, we 

exploit Support Vector Machine (SVM) classifiers [31]. In 

order to illustrate the discriminative power of our 3D 

CT-Scanner reconstruction footprints, let us come back to our 

simulation framework, where 100 different Gaussian noises nu, 

u = 1, 2, …, 100, were generated and used as input of the 5 

image reconstruction algorithms presented above, i.e., Ri, i = 1, 

2, …, 5, leading thus to 500 reconstructed noisy images RiI . 

The respective footprints of these images were then calculated: 
u

RiC , 1, ,100u  , 1, ,5i  . We give in Fig. 7, the correlation 

values we obtained in-between the footprint 
1

2RC  and the 500 

others. As it can be seen the maximum correlation is achieved 

for 
1

2RC  and the 100 other footprints 2

u

RC , 1, ,100u  , i.e., 

the other 100 simulated noises processed with the same 

reconstruction algorithm 2R . One can also see that there is a 

clear gap between the correlations 
1

2RC  and 
u

RiC , 

1,2,...,100u  ， 1, 3, 4, 5.i   Similar results are obtained with 

other reconstruction algorithms. From these simulated 

experiments, we expect that our 3D image reconstruction 

algorithm footprint will be able to discriminate CT-Scanner 

according to their reconstruction algorithm. As we will see in 

the sequel, this is the case.  

It is important to notice that this experiment also shows that 

when several CT-Scanners use the same reconstruction 

algorithm, the proposed footprint will not allow discriminating 

them. This statement is observable in Fig. 7, where the 

correlations between the footprint 
1

2RC  and the other 100 

footprints 2

u

RC , 1, ,100u  , i.e. different CT-Scanners that 

use the reconstruction algorithm R2, are always high (see the 

red crosses). Nevertheless, and as we will see in Section IV. C, 

when combined with OSPN, our 3D image reconstruction 

algorithm footprint can reinforce CT scanner identification. 

IV. EXPERIMENTS 

We have collected 15 CT image sets from 15 CT-Scanner 
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Fig. 6.  CT 3D image reconstruction algorithm footprint extraction. 
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models of 4 distinct manufacturers (see Table I) so as to 

conduct our experiments. Every set is constituted of 200 images 

of various content (i.e. anatomical objects), leading thus to a 

global database of 3000 images. Notice that all these images are 

raw image data (i.e., uncompressed data). We give in Fig. 8 

some illustrative samples of our CT image test sets. 

In the following, we compare the performance of 

CT-Scanner identification systems based on the detection of 

OSPN and SPN into images, respectively. We then present the 

results we obtained in discriminating CT-Scanner systems 

based on their reconstruction algorithms. At last, we examine 

the performance of CT-Scanner identification based on both 

OSPN and 3D CT-Scanner reconstruction footprint. 

A. Comparison OSPN with SPN 

In this section, we compare our OSPN based approach with 

the SPN based approach reported in [26]. Let us recall the 

principle of these approaches stands on the correlation between 

the OSPN/SPN of a CT-Scanner, i.e., the reference OSPN/SPN, 

with the OSPN/SPN extracted from the image under 

observation. In this experiment, for one CT-Scanner, its 

reference OSPN or SPN was first extracted using 30 images by 

averaging their respective OSPN or SPN. Then, 100 other 

images issued from the same CT-Scanner combined with 1400 

other test images of the other CT-Scanners (100 per 

CT-Scanner) were randomly selected to constitute the test set. 

The reason why we decided not to use all images in a trial, is to 

reduce time computation. It also stands on the fact that we 

observed that the results obtained by randomly selecting 30 

reference images and 100 test images are very similar to those 

obtained with all images. In a trial, images are randomly 

selected over our whole image set and not from a subset of it. 

For all CT-Scanners, Fig. 9 shows the histograms of the 

correlation values of the SPN and of the OSPN extracted from 

these images, with the reference SPN and reference OSPN of 

CT-Scanners. It is observed that correlation values of the 

positive class (correct identification) and negative class 

(incorrect identification) cannot be separated clearly with the 

SPN (Fig. 9(a)), while a clear margin exists between these two 

classes with the OSPN (Fig. 9(b)).  

To go further in this comparison, we use the ROC (Receiver 

Operating Characteristic) curve, which is obtained by 

computing the true positive rate (TPR), and the false positive 

rate (FPR) for a binary classifier system as its discrimination 

threshold varies, to measure the performance. The respective 

ROC curves of SPN and OSPN are given in Fig. 10. Again it 

can be seen that OSPN performs better than SPN.  

 

B. Identification of 3D image reconstruction algorithms  

As exposed in section III, this approach stands on the 

training of an SVM classifier so as to discriminate different 

CT-Scanners based on their 3D image reconstruction algorithm 

footprints. Once the classifier built up, this one will take as 

      

Fig. 8.  Illustrate example of our CT image test sets. 

  

TABLE I 

LIST OF THE CT-SCANNERS CONSIDERED IN OUR EXPERIMENTS 

ID CT Model ID CT Model 

A1 GE Bright Speed B1 Philips Briliance 

A2 GE Discovery CT590 RT B2 Philips Mx8000 IDT 

A3 GE Discovery CT750 HD C1 Siemens Emotion 

A4 GE Discovery HR C2 Siemens Sensation 

A5 GE Discovery STE C3 Siemens Definition 

A6 GE Light Speed QXi D1 Toshiba Aquilion 

A7 GE Light Speed  D2 Toshiba Xpeed 

A8 GE Light Speed VCT   
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Fig. 9. (a) Histogram of the SPN correlation values, (b) Histogram of the OSPN 

correlation values. 

 



 

 

input the footprint of the image we want to find out the origin 

of. The following results are given in average after having 

trained our SVM classifier 5 times with different learning 

CT-Scanner image sets of 30 images randomly selected. At 

each time, the classifier is by next tested choosing randomly 

100 other images. The average confusion matrix of 

classification rates is given in Table II, where the (i, j)
th 

entry 

denotes the percentage of images that belong to the i
th

 

CT-Scanner (row) and which have been identified as issued 

from the j
th

 CT-Scanner (column). As it can be seen, the overall 

classification accuracy is in average of 95.04% with a standard 

deviation of 3.48%. Herein, our system is able to distinguish 

CT-Scanners since they use different image reconstruction 

algorithms. Nevertheless, it is important to recall that if two 

CT-Scanners use the same reconstruction algorithm; our 

system will not be able to discriminate them (see last 

experiments of Section III. B). 

C. CT-Scanner identification based on both OSPN and 3D 

image reconstruction algorithm footprints 

Herein, we examine the identification of a CT-Scanner using 

both OSPN and 3D image reconstruction algorithm footprints. 

In this experiment, the 3D image reconstruction algorithm 

footprint vector C is concatenated with OSPN vector, and then 

used as classifier input. More precisely, the considered image 

footprint corresponds to a vector whose components are: the 

image OSPN (512 samples) and 3D image reconstruction 

algorithm footprint (180 samples). As in the previous 

experiment, the following results are given in average after 5 

trials. At each time our SVM was trained on different learning 

set containing 30 images and testing set of 1500 other images 

(100 per scanner) randomly chosen from our whole test set. The 

average confusion matrix of the classification rates we obtained 

are given in Table III. As it can be seen, the overall 

classification accuracy is about 96.65% with a standard 

deviation of 1.22%. In order to go further in the performance 

comparison of this last system with the schemes based on SPN 

or OSPN, respectively, we give in Fig. 10 their respective ROC 

curves after 5 iterations. Notice that the ROC Curve of our 

SVM based system has been achieved following the approach 

given in [17] by computing the fractions of correctly and 

wrongly classified images, while making varying parameter 

values associated to the SVM kernel function. In our 

experiments, the radial basis function (RBF) was used. Both 

Fig. 10 and table III show that the hybrid approach provides 

better results than the approach based only on one set of 

footprints (OSPN or reconstruction algorithm footprints).  

In order to refine the gain of performance of the hybrid 

approach compared to OSPN, we conducted one last 

experiment where we trained an SVM using only OSPN as 

input. The average confusion matrix of the classification rates 

we obtained, after having trained our SVM classifier as 

previously (i.e., 5 times with different learning/training 

CT-Scanner image sets), is given in Table IV. As it can be seen, 

the overall classification accuracy is in average of 93.84% and 

is below the performance of the hybrid approach. To complete 

this experiment, we also give in Fig. 10 the ROC curve obtained 

with the hybrid approach after 5 iterations (see green curve). It 

can be seen that it achieves equivalent performance compared 

to the OSPN correlation based detection results of Section IV. 

A. 

As far as we know, different underlying reasons can 

TABLE II 

CONFUSION CLASSIfiCATION RATE MATRIX BASED ON OUR 3D IMAGE RECONSTRUCTION ALGORITHM FOOTPRINTS CONSIDERING THE 15 CT-SCANNERS 

LISTED IN TABLE 1 AS 15 DISTINCT CLASSES  

ID A1 A2 A3 A4 A5 A6 A7 A8 B1 B2 C1 C2 C3 D1 D2 

A1 96.3 1.27 0.76 0.27 0 1.4 0 0 0 0 0 0 0 0 0 

A2 1.27 91.6 1.27 0.6 1.46 1.26 1.27 1.27 0 0 0 0 0 0 0 

A3 0.46 1.3 94.41 0 0.03 0.9 2.13 0.77 0 0 0 0 0 0 0 

A4 0.43 0 0 99.24 0 0 0.33 0 0 0 0 0 0 0 0 

A5 0 0.5 0 0 96.16 0 3.34 0 0 0 0 0 0 0 0 

A6 2.37 1.1 1.33 0 0.03 95.04 0.13 0 0 0 0 0 0 0 0 

A7 0 2.93 2.13 0 3.33 0.13 84.95 6.53 0 0 0 0 0 0 0 

A8 0 1.27 0.77 0 0 0 6.52 91.44 0 0 0 0 0 0 0 

B1 0 0 0 0 0 0 0 0 97.11 0.67 0.76 0.73 0.73 0 0 

B2 0 0 0 0 0 0 0 0 0.53 95.61 1 0.6 2.26 0 0 

C1 0 0 0 0 0 0 0 0 0.43 0.4 97.2 1.27 0.7 0 0 

C2 0 0 0 0 0 0 0 0 1.73 0.26 1.43 95.98 0.6 0 0 

C3 0 0 0 0 0 0 0 0 0.37 1.97 1.37 0.53 95.76 0 0 

D1 0 0 0 0 0 0 0 0 0 0 0 0 0 97.78 2.22 

D2 0 0 0 0 0 0 0 0 0 0 0 0 0 2.96 97.04 
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Fig. 10. ROC curves of image origin identification schemes based on: 

SPN-correlation, OSPN-correlation, OSPN-SVM and the combination of 

OSPN with 3D image reconstruction algorithm footprints with SVM. 



 

 

contribute to explain misclassifications. They depend on the 

closeness of the CT scanners in terms of signal processing (e.g. 

reconstruction algorithms) and electronic components (e.g. 

X-Ray Tube) and also on the quality or noisiness of the image. 

The noisier the image, the more difficult is the extraction of the 

image OSPN and 3D image reconstruction algorithm footprints. 

However, more experiments with broader image sets are 

necessary to identify the contribution or influence of these 

aspects onto the performance of the above approaches.   

V. CONCLUSION 

In this paper, three approaches have been proposed to 

identify the CT-Scanner that has issued an image. They take 

advantages of the principles of CT-Scanner acquisition chain 

and of the presence of an inherent array sensor noise. We have 

shown that: i) it is possible to extract the original sensor pattern 

noise from an image by inverting back the simple back 

projection algorithm and ii) this OSPN can be used to better 

discriminate the origin of an image than solutions proposed for 

general public devices. We also proposed a 3D reconstruction 

algorithm footprint which put in evidence periodicities and 

similarities of such algorithms onto OSPN. As experimentally 

shown, when combined, these sets of features constitute a 

robust CT-Scanner footprint with very high detection 

capability. However, in order to generalize our results, further 

experiments have to be conducted on a broader set of images 

and devices. Moreover, as the quality of our footprints depends 

on the image denoising process, future works will focus on 

identifying the most adapted image filter.  
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