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 

Abstract—In this paper, we propose a new reversible 

watermarking scheme. One first contribution is a histogram 

shifting modulation which adaptively takes care of the local 

specificities of the image content. By applying it to the image 

prediction-errors and by considering their immediate 

neighborhood, the scheme we propose inserts data in textured 

areas where other methods fail to do so. Furthermore, our scheme 

makes use of a classification process for identifying parts of the 

image that can be watermarked with the most suited reversible 

modulation. This classification is based on a reference image 

derived from the image itself, a prediction of it, which has the 

property of being invariant to the watermark insertion. In that 

way, the watermark embedder and extractor remain 

synchronized for message extraction and image reconstruction. 

The experiments conducted so far, on some natural images and on 

medical images from different modalities, show that for capacities 

smaller than 0.4 bpp (bpp - bits of message per pixel of image) 

our method can insert more data with lower distortion than any 

existing schemes. For the same capacity, we achieve a PSNR of 

about 1-2 dB greater than with the scheme of Hwang et al., the 

most efficient approach actually.  

 
Index Terms—Reversible/lossless watermarking, medical 

image, signal classification. 

I. INTRODUCTION 

OR about ten years, several reversible watermarking 

schemes have been proposed for protecting images of 

sensitive content, like medical or military images, for 

which any modification may impact their interpretation [1]. 

These methods allow the user to restore exactly the original 

image from its watermarked version by removing the 

watermark. Thus it becomes possible to update the watermark 

content, as for example security attributes (e.g. one digital 

signature or some authenticity codes), at any time without 

adding new image distortions [2] [3]. However, if the 

reversibility property relaxes constraints of invisibility, it may 

also introduce discontinuity in data protection. In fact, the 
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image is not protected once the watermark is removed. So, 

even though watermark removal is possible, its 

imperceptibility has to be guaranteed as most applications 

have a high interest in keeping the watermark in the image as 

long as possible, taking advantage of the continuous protection 

watermarking offers in the storage, transmission and also 

processing of the information [4]. This is the reason why, there 

is still a need for reversible techniques that introduce the 

lowest distortion possible with high embedding capacity.  

Since the introduction of the concept of reversible 

watermarking in the Barton patent [5], several methods have 

been proposed. Among these solutions, most recent schemes 

use Expansion Embedding (EE) modulation [6], Histogram 

Shifting (HS) [7] modulation or, more recently, their 

combination. One of the main concern with these modulations 

is to avoid underflows and overflows. Indeed, with the 

addition of a watermark signal to the image, caution must be 

taken to avoid gray level value underflows (negative) and 

overflows (greater than 2
d
-1 for a d bit depth image) in the 

watermarked image while minimizing at the same time image 

distortion. Basically, EE modulation is a generalization of 

Difference Expansion modulation introduced by Tian et al. [6] 

which expands the difference between two adjacent pixels by 

shifting to the left its binary representation, thus creating a new 

virtual least significant bit (LSB) that can be used for data 

insertion. Since then, EE has been applied in some transformed 

domains such as the wavelet domain [8] [9] or to prediction-

errors. EE is usually associated with LSB substitution applied 

to “samples” that cannot be expanded due to the signal 

dynamic limits or in order to preserve the image quality. In [7], 

Ni et al. introduced the well-known Histogram Shifting (HS) 

modulation. HS adds gray values to some pixels in order to 

shift a range of classes of the image histogram and to create a 

‘gap’ near the histogram maxima. Pixels which belong to the 

class of the histogram maxima ("Carrier-class") are then 

shifted to the gap or kept unchanged to encode one bit of the 

message ‘0’ or ‘1’. Other pixels (the "non-carriers") are simply 

shifted. Instead of working in the spatial domain, several 

schemes apply HS to some transformed coefficients [10] or 

pixel prediction-errors [11] [12], histograms of which are most 

of the time concentrated around one single class maxima 

located on zero. This maximizes HS capacity [10-12] and also 

simplifies the re-identification of the histogram classes of 

maximum cardinality at the reading stage. In order to reduce 
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the distortion while preserving the capacity, some pre-

processing has been suggested in order to identify pixels, 

transformed coefficients or prediction-errors that do not 

belong to the histogram maxima classes ("non-carrier 

classes"). As we will see later, different schemes working with 

prediction-errors do not watermark pixels within a 

neighborhood of high variance [11-13]; indeed, these pixels 

belong to histogram classes that are shifted without message 

embedding. Recently, Hwang et al. [12] improved the 

approach of Sachnev et al.. They suggest defining the set of 

carrier-classes as the classes which minimize, for a given 

capacity, image distortion. However, their set of carrier-classes 

is uniquely defined for the whole image and the execution time 

of this approach is rather high.  

In our view, none of the previous methods takes full 

advantage of the pixel neighborhood. We propose to adapt 

dynamically the carrier-classes by considering the local 

specificities of the image. We simply suggest using the local 

neighborhood of each prediction-error in order to determine 

the most adapted carrier-class for message insertion.  

Another refinement we propose is based on the selection of 

the most locally adapted lossless modulation. Indeed, 

reversible modulations are more or less efficient depending on 

image content. This is especially the case for medical images 

where large black areas exist (i.e. the background area). In 

these regions, directly applying HS on pixels may be more 

efficient and of smaller complexity than applying it on 

prediction-errors. Because, the histogram maxima corresponds 

to the null gray value; capacity is maximized and underflows 

simply avoided by shifting pixel value to the right, i.e. by 

adding a positive gray value. When working on prediction-

errors in these regions, the management of 

overflows/underflows is more difficult because the shift 

amplitude can be positive or negative. This is why we suggest 

considering the local content of the image in order to select the 

most locally adapted lossless modulation. This should allow us 

to optimize the compromise capacity/image distortion. The 

problem to solve is then how to synchronize the watermark 

embedder and extractor. Indeed, for message extraction, the 

extractor needs to know which modulation to use. The solution 

we propose is derived from one of our previous work [10] 

where an image classification process is exploited in order to 

identify the areas of the image that can be additively 

watermarked without introducing underflows/overflows. This 

classification process is conducted on a reference image 

derived from the image itself, a prediction of it, and it has the 

property of being invariant to the watermark insertion process. 

Thus, the watermark embedder and extractor remain 

synchronized because the extractor will retrieve the same 

reference image. Herein, we adapt this process to select the 

most locally appropriate watermarking modulation. 

The rest of the paper is organized as follows. The main 

principles of our "Dynamic" Histogram Shifting modulation 

are introduced in section II. Section III is devoted to our 

overall scheme and presents the way we merge classification 

and HS modulations. Section IV sums up the performance 

analysis of our scheme in terms of imperceptibility and 

capacity on different sets of medical images from different 

modalities as well as on some well-known natural test images 

like Lena. A comparison with the most efficient approaches [9-

12] is also performed. Conclusions are provided in Section V. 

 

II. CLASSICAL AND DYNAMIC HISTOGRAM SHIFTING 

A. Basic HS Modulation principles 

Originally introduced by Ni et al. in the spatial domain [7], 

the basic principle of Histogram Shifting modulation, 

illustrated in Fig. 1 in a general case, consists of shifting a 

range of the histogram with a fixed magnitude , in order to 

create a ‘gap’ near the histogram maxima (C1 in fig. 1). Pixels, 

or more generally samples with values associated to the class 

of the histogram maxima (C0 in fig. 1b), are then shifted to the 

gap or kept unchanged to encode one bit of the message, i.e. 

‘0’ or ‘1’. As stated previously, we name samples that belong 

to this class as “carriers”. Other samples, i.e. “non-carriers”, 

are simply shifted. At the reading stage, the extractor just has 

to interpret the message from the samples of the classes C0 and 

C1 and invert watermark distortions (i.e. shifting back shifted 

value). Obviously, in order to restore exactly the original data, 

the watermark extractor needs to be informed of the positions 

of samples that have been shifted out of the dynamic range 

([vmin, vmax] in Fig. 1b), samples we refer as overflows or 

underflows (Fig. 1b only illustrates “overflows”). This requires 

the embedding of an overhead and reduces the watermark 

capacity. Typically this overhead corresponds to a location 

map (a vector) whose components inform the extractor if 

samples of value vmax are original values or shifted values. In 

fact, considering the example in Fig. 1, the HS payload (C), 

i.e. the number of message bits embedded per sample of host 

data, is defined as:  

max max 10 ( )v vC C C C


                    (1)  

where C0 is the class of carrier samples (see fig. 1), 
maxvC and 

max 1vC


are classes associated to “overflows” and |.| gives the class 

cardinality. Herein, the location map is a binary vector of 

1maxmax  vv CC bits long. One of its component indicates if a 

watermarked sample of value vmax, is or is not a shifted sample. 

In that case, a host image can be HS watermarked if the 

capacity given by |C0| is greater than the overhead length, i.e. 

1maxmax  vv CC . More generally, HS cannot be applied to 

data uniformly distributed. Conversely, the HS modulation will 

be efficient when histograms are concentrated around one 

single maxima. As an example, HS will provide good 

performances within black areas in medical images where the 

pixels have almost null gray values (these areas may occupy a 

large part of the image as shown in Fig. 5). However, images 

with such a histogram limited to one single maxima are not so 

common. Consequently, the achieved capacities remain 

limited. At the same time, the issue of histogram maxima 

retrieval by the watermark extractor may become more 

difficult to address. This is why the most recent works 

modulate wavelet subbands coefficients [9] [10] or the 

prediction-error of pixels, the distributions of which being 
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most often Laplacian or Gaussian. In [9], Thodi et al. applied 

HS to the difference of two adjacent pixels for data 

embedding. In [10], we extended the Ni et al. scheme to Haar 

wavelet coefficients. In [11], Sachnev et al. propose to predict 

pixels through their four nearest neighbors and apply HS to the 

prediction-error. They achieve better performances than earlier 

existing schemes. In fact, it appears that the distribution of 

their prediction-error has a smaller variance than those of pixel 

differences or Haar wavelet coefficients. The choice of the 

wavelet transform or of the predictor will obviously impact the 

algorithm performance [14].  

 

 

 
From here on, we work with the image prediction-error. 

Considering the pixel block in Fig. 2, the prediction-error ei,j 

of the pixel pi,j is given by 
jijiji ppe ,,,

ˆ , where jip ,
ˆ is the 

predicted value of pi,j derived as in [11] [12] from its four 

nearest neighbor pixels :  

  4ˆ
1,,11,,1,   jijijijiji ppppp         (2) 

 

The prediction-error can thus be HS modulated as illustrated 

in Fig. 3a. In that case, prediction-errors which do not belong 

to the carrier-class Cc = [-∆, ∆[ are considered as “non-

carriers” and are shifted of +/- depending on their sign (+ if 

0, jie ;  - if 0, jie ). Prediction-errors within the class 

Cc = [-∆, ∆[, the “carriers”, are used for embedding. jie , is left 

unchanged to encode ‘0’ or shifted to the range [-2∆, -∆[ or [∆, 

2∆[, depending on its sign, to encode ‘1’. Notice that, even 

though message insertion is conducted in the prediction-error, 

it is the image pixels which are modulated. As a consequence, 

overflows and underflows appear in the spatial domain. It must 

be known, even though this is quite rare, that 

overflows/underflows may also appear in the prediction-error 

domain, for instance when the image is saturated by noise.  

From this standpoint, different refinements have been 

proposed in order to optimize capacity and minimize 

distortion. Instead of simply shifting by ∆ carrier prediction-

errors, some authors apply EE modulation to them (see Section 

I). We do not have space to go into details, but this process 

results in adapting the shifting amplitude to the prediction-

error value instead of shifting all of them by a constant ∆. The 

capacity is identical but distortion is minimized. Sachnev et al. 

[11] as well as Hwang et al. [12] and some others [14] [15] 

take advantage of this refinement. Our scheme does not, even 

though it can. Distortion can also be minimized by avoiding 

shifting non-carrier prediction-errors. As stated earlier, these 

prediction-errors belong to blocks of high variance, i.e. blocks 

where the predictor bias is high. Recently, Hwang et al. [12] 

extended the scheme of Sachnev et al. [11] by looking 

iteratively for the frontiers between the carrier-classes and 

non-carrier classes so as to minimize image distortion at a 

given capacity rate. By doing so, they achieve the best 

performance reported so far.  

 

 

B. Dynamic histogram shifting 

As stated above, prediction-errors that encode the message 

belong to the carrier-class Cc = [-∆, ∆[, other prediction-errors 

are non-carriers. This predicate is static for the whole image 

and does not consider the local specificities of the image 

signal. Moreover, because prediction acts as a low-pass filter, 

most prediction-error carriers are located within smooth image 

regions. Highly textured regions contain non-carriers. The 

basic idea of our proposal is thus to gain carriers in such a 

region by adapting the carrier-class Cc depending on the local 

context of the pixel or of the prediction-error to be 

watermarked. We propose a Dynamic Histogram Shifting 

modulation to achieve this goal. 

Let us consider the dashed pixel block B in Fig. 2. Let us 

also assume that we aim only at modulating the prediction-

errors ei,j (or equivalently pi,j) indicated by 'x' in Fig.2, leaving 

intact their immediate neighborhood. Because of the local 

 
Fig.3. HS modulation applied on predict errors: (a) classical modulation; 

(b) dynamical modulation 

 
Fig.2. Pixel neighborhood for prediction – in a 3x3 pixels block B, pi,j is 

estimated through its four nearest neighbors pi-1,j, pi,j+1, pi+1,j and pi,j-1. 

 

C0 C1 C2 C3 C4 C5 

|Ck| 

Classes C0 C1 C2 C3 C4 C5 

|Ck| 

Classes 

+  

‘0’ ‘1’ 

Overflows  
+  

Carriers  

Non Carriers  

(a) (b) 

 
Fig.1. Histogram shifting modulation. (a) original histogram (b) histogram 

of the watermarked data.  
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stationarity of the image signal we can assume without too 

much risk that contiguous prediction-errors have the same 

behavior. As a consequence, we suggest considering the 

prediction-error neighborhood so as to better define the 

location of Cc on the prediction-error dynamic.  

Taking the eight neighbors of pi,j: {pi-k,j-l}k,l =-1 …1, we can get 

their respective prediction-errors ei-k,j-l. We propose then to 

define the carrier-class Cc as the histogram range to which the 

absolute values of prediction-errors {|ei-k,j-l|}k,l =-1 ..1, k,l≠0,0 

belong (see Fig.3b): Cc = [-me-∆/2, -me+∆/2[[me-∆/2, 

me+∆/2[, where me is the mean-value of {|ei-k,j-l|} k,l =-1 ..1, k,l≠0,0. 

Our choice in using the absolute value instead of using the 

prediction-error itself stands in the fact that contiguous 

prediction-errors are distributed around the zero value. Using 

their mean-value or a linear combination of them will result in 

predicting Cc centered on zero. Based on our approach, the 

reference class Cc is determined dynamically for each 

prediction-error of the image. In fact, it allows us to 

compensate the prediction-error in textured regions and 

consequently gives us the capability to insert data in such areas 

where other methods fail to do so.  

It is important to notice that pi,j as well as all pixels 

identified by ‘x’ in Fig.2  are modified after embedding. As a 

consequence, the prediction-error neighborhood of pi,j  will 

also vary if it is computed based on eq. 2. The solution we 

adopted to overcome this issue consists to use the predicted-

value jip ,
ˆ  instead of pi,j  in eq. 2.  For example, the prediction-

error ei-1,j is given by 
jijiji ppe ,1,1,1

ˆ
 

 
with 

  4ˆˆˆ
1,1,1,1,2,1   jijijijiji ppppp . pi-2,j and pi,j are 

replaced by their predicted-value respectively. This means that 

the prediction-error neighborhood is not derived from the 

original image but from a copy of it where pixels for 

embedding are replaced by their predicted-values. An 

alternative to this strategy is to compute the prediction-error 

neighborhood using the diagonal pixel neighbors. However, 

this later approach appears to be less efficient.  

As exposed, with our strategy, the location of Cc is 

computed independently of ei,j, (or equivalently of pi,j,), and 

will be retrieved by the extractor: embedder and extractor 

remain synchronized without having to embed some extra-

overhead. Nevertheless, our dynamic histogram shifting 

modulation requires performing the watermarking of the image 

in several passes. Herein, one quarter of the image pixels are 

watermarked at each pass in order to ensure that their 

prediction-error neighborhood remains unchanged (see Fig. 2). 

Going through the image into several passes in order to 

watermark all the pixels is not new. This is the case of most 

methods working with HS applied to pixel prediction-errors 

[11][12].  

The modulation we propose provides no advantage 

regarding overflows/underflows which still have to be 

managed. We come back to this issue in the next section where 

we proposed an original strategy for that purpose.  

Let us also notice that, as for any HS modulations (see 

section II-A), one can gain in performance by applying EE 

modulation on the prediction-error carriers instead of simply 

shifting them. For the same capacity, the distortion will be 

reduced. The scheme we present thereafter does not use EE. 

As a consequence, the performance we give in section IV can 

be improved.  

III. PROPOSED SCHEME 

As mentioned previously, our scheme relies on two main 

steps. The first one corresponds to an "invariant" classification 

process for the purpose of identifying different sets of image 

regions. These regions are then independently watermarked 

taking advantage of the most appropriate HS modulation. 

From here on, we decided distinguishing two regions where 

HS is directly applied to the pixels or applied dynamically to 

pixel prediction-errors respectively. We will refer the former 

modulation as PHS (for "Pixel Histogram Shifting") and the 

later as DPEHS (for "Dynamic Prediction-Error Histogram 

Shifting"). Our choice is based on our medical image data set, 

for which PHS may be more efficient and simple than the 

DPEHS in the image black background, while DPEHS will be 

better within regions where the signal is non-null and textured 

(e.g. the anatomical object). In the next section we introduce 

the basic concept of the invariance property of our 

classification process before detailing how it interacts with 

PHS and DPEHS. We also introduce some constraints we 

imposed on DPEHS in order to minimize image distortion and 

then present the overall procedure our scheme follows. 

A. Invariant image classification 

As said above, our classification process exploits a 

reference image Î  derived from the image I itself under the 

two following constraints : i) Î  remains unchanged after I has 

been watermarked into Iw, i.e. I and Iw have the same reference 

image; ii) Î  keeps the properties of an image signal so as to 

serve a classification process.  

Even though PHS and DPEHS only modulate one pixel 

value within one block of the image (see section II-B and 

Fig.2), let us consider a more general framework where we 

watermark B
k
, the k

th
 block of the image, by adding or 

subtracting a watermark pattern W, i.e. B
k
w = B

k
 +/- W. In our 

classification process, we associate the reference block 

 k

NjNi

k

NjNi

k

ji

k pppB  ,,,
ˆ,...,ˆ,ˆˆ  to 

 k

NjNi

k

NjNi

k

ji

k pppB  ,,, ,...,, . Considering linear 

algebra, the invariance constraint can be expressed as  
kB̂ = A. 

kB =A. 
k

wB  =A.(
kB +/-W)   (3)  

where A is matrix of (2N+1)x(2N+1) coefficients for a block of 

(2N+1)x(2N+1) pixels. As defined, W is in the null space of A. 

At the same time, in order to ensure that 
kB̂  keeps the signal 

properties of an image, it can be designed as a predicted 

version or a low pass filtered version of B.  

To exemplify this, let us consider again the 3x3 pixel block 

as illustrated in fig. 2, and the watermark pattern W=[ 1, 0, 0, 

0, 0, 0, 0, 0, 0]. In fact, W is added or subtracted so as to apply 

PHS or DPEHS (see sections II-A and II-B). In that case, the 

corresponding matrix A is given by:  
kk BAB .ˆ           (4) 
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The reference block of B
k
 corresponds then to 

 k

ji

k

ji

k

ji

k pppB 1,11,1, ,...,,ˆˆ
  where 

k

jip ,
ˆ is a linear 

combination of 
k

jip , .  

Once these constraints are fulfilled, the watermark extractor 

will retrieve exactly Î . Beyond, this allows us to characterize 

each block of the image by some simple measures extracted 

from its block of reference (e.g. maximum and minimum 

values, mean or standard deviation and so on). Such a block 

characterization is the basis of our classification process.  

To illustrate this purpose, let us consider the first 

classification process whose objective for medical images is to 

discriminate regions that will be PHS or DPEHS watermarked. 

As stated, this corresponds merely distinguishing the black 

background of the image from the anatomical object. Let us 

continue also with the application matrix A in eq. 5. In order to 

decide if one block B
k
 belongs to the background or not, one 

can simply characterizes B
k
 by its value jip ,

ˆ  (issued from kB̂ ) 

and compare it to a threshold so as to take a decision. In our 

implementation, based on the fact that PHS and DPEHS are 

parameterized by a shift of magnitude Δ, we fixed this 

threshold equal to Δ, i.e. if jip ,
ˆ < Δ then kB  belongs to the 

PHS region otherwise to the DPEHS region. From here on, we 

will also consider as part of the image background, blocks 

satisfying jip ,
ˆ > (2

d
-1) – Δ (for a d bit depth image). The 

reason is because the medical image background sometimes 

contains saturated pixels corresponding to some annotations or 

markers that indicate, for example, the image acquisition 

orientation (e.g. right or left).   

From that standpoint, we can distinguish different parts of 

the image and the extractor will be able to retrieve them easily 

if it knows A. Our scheme uses this approach not only for 

identifying image regions where to apply PHS or DPEHS but 

also for managing underflows and overflows, i.e. we do not 

have to watermark some extra-overhead data. We come back 

to this issue in the next section.  

Notice also that the structure of the watermark pattern W 

can be made more complex. In fact, it depends on the insertion 

modulation. In [10], we carried out the embedding in the Haar 

wavelet transform of 2x2 pixel blocks considering a pattern W 

such as W=[1, -1, -1, 1].  

B. Management of underflows/overflows  

For sake of simplicity, let us consider one quarter of the 

image pixels for message embedding, i.e. the pixels indicated 

by ‘x’ in Fig. 2. Let us also consider a specific run into the 

image and note p
k
 the k

th
 pixel considered for embedding. 

Each pixel p
k
 can be framed by a block B

k
 of 3x3 pixels – see 

dashed block in Fig.2 – to which is associated a reference 

block  k

ji

k

ji

k

ji

k pppB 1,11,1, ,...,,ˆˆ
  computed using the 

matrix A in eq. 5 (
k

jip ,
ˆ  is a linear prediction of 

k

jip , ). 
k

jip ,  

will be PHS or DPEHS modulated. This can be viewed as the 

addition or subtraction of watermark pattern W to the block B
k
, 

where W=[ 1, 0, 0, 0, 0, 0, 0, 0, 0] (see above). As a 

consequence, despite the fact there is a block overlap, 

reference blocks remain invariant to the insertion process.  

 

 PHS underflows/overflows  

According to the previous classification, PHS is applied to a 

pixel 
k

jip ,
 
if its predicted-value falls in the range identified by 

ji
kp ,ˆ < Δ (low-part) and ji

kp ,ˆ > (2
d
-1) – Δ (high-part). Because 

in the low-part (resp. high-part), PHS shifts the pixels by 

adding (resp. subtracting) Δ gray values; there is no risk of 

underflow (resp. overflow). However, the risk an overflow 

(resp. underflow) occurs is not null. It happens when ji
kp ,ˆ < Δ 

(resp. ji
kp ,ˆ > (2

d
-1) – Δ) while pi,j>(2

d
-1) – Δ (resp. pi,j< Δ), it 

means when the pixel in the center of the block is completely 

different from its neighbors. Based on the fact that the image 

signal is usually highly correlated locally and that Δ 

corresponds to a few number of gray levels, these overflows 

(resp. underflows) are unlikely to happen. Even though such 

an overflow or underflow never occurred in all the 

experiments we conducted so far, our system handles this 

situation. It embeds along with the message an overhead 

constituted of two flags indicating an overflow and/or an 

underflow occurred followed by the necessary information for 

restoring the image pixels (see section II.A).  

 

 DPEHS underflows/overflows  

By definition (see section II-B), DPEHS results in 

adding/subtracting Δ to 
k

jip ,  (or adding/subtracting W to kB ) in 

order to modulate its prediction-error. Hence, some pixels may 

lead to an underflow/overflow if watermarked. To distinguish 

“watermarkable” pixels (or blocks), i.e. pixels that do not 

introduce overflow or underflow if modified, we propose a 

second classification process also based on the reference 

image Î , or more precisely on the reference block 
kB̂ .  

In order to build up this classification process we propose to 

characterize one pixel 
k

jip ,  (or equivalently its framed block 

B
k
) through some characteristics extracted from its reference 

block ˆ kB . The objective is to discriminate watermarkable 

pixels (or blocks) from the others with these characteristics. 

Herein, two characteristics are used. They are defined as 
kBmin

ˆ and kBmax
ˆ and correspond to the minimum and maximum 

values of ˆ kB  respectively. Then, considering in the image the 

No and Nu pixels (or equivalently blocks) that if watermarked 

by adding or subtracting Δ to 
k

jip ,  (or by adding/subtracting 
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W to B
k
) lead to an overflow or and underflow respectively, we 

can identify two thresholds Tmin and Tmax such as  

Tmin = max n=1..Nu (
nBmin

ˆ ); Tmax = min m=1..No (
mBmax

ˆ )     (6) 

A block B
k
 or its corresponding pixel p

k
i,j is then considered as 

watermarkable if it satisfies the following constraints: 
kBmin

ˆ > Tmin and kBmax
ˆ < Tmax             (7) 

otherwise, it is considered as non-watermarkable and will not 

be modified. More clearly, we do not watermark pixels (or 

blocks) of same characteristics than those subject to overflows 

or underflows if watermarked. Notice that this classification 

process is done before DPEHS message insertion is conducted. 

Indeed we need to know which pixels are watermarkable.  

Following the same strategy, conducted on some invariant 

characteristics, the extractor will re-identify non-

watermarkable pixels from the others. Nevertheless, in some 

cases, the extractor can identify threshold values T
r
min and T

r
max 

different from Tmin and Tmax computed at the embedding stage. 

In fact, some watermarked pixels (or blocks) may be identified 

by the extractor as subject to underflow or overflow changing 

at the same time the threshold values in a way such as 

T
r
min>Tmin and T

r
max<Tmax. If this change occurs the extractor 

needs to be informed of the original values of Tmin and Tmax so 

as to retrieve all watermarked pixels and recover the original 

image perfectly. In our system, flag bits that indicate the 

change of Tmin and Tmax as well as their original values are 

embedded along with the message and a two step insertion 

process is used. During the first step, Tmin and Tmax and a part 

of the message is embedded considering the values of T
r
min and 

T
r
max the decoder will find. The remaining portion of the 

message is embedded by modifying the last watermarkable 

pixels. On the recipient side, the extractor will extract the first 

part of the message based on T
r
min and T

r
max. It will get access 

to the rest of the information after a second reading step.  

The way we manage threshold changes is based on the fact 

the embedder knows exactly what the extractor will see 

applying the same strategy. Thus, after having watermarked a 

pixel, the embedder checks if this one will be subject to an 

overflow or underflow from the extractor point of view and if 

it changes the threshold values. Most of the time, the change of 

Tmin or Tmax into T
r
min or T

r
max respectively is due to one non-

carrier pixel (i.e. one pixel associated to one non-carrier 

prediction-error). The embedder can easily identify such a 

pixel as it can only be modified in one way (adding or 

subtracting Δ - see section II.B). Then, informed by a flag bit 

the embedder has inserted along with the message, the 

extractor knows that T
r
min and/or T

r
max differ from Tmin and/or 

Tmax respectively and it has some other blocks to read and 

restore. Nevertheless, for some images, the change can occur 

on a carrier prediction-error. This situation is more difficult to 

handle as the pixel modification depends on the bit value of 

the message to be embedded (see section II-A). More clearly, 

depending if the bit value to embed is equal to ‘0’ or ‘1’, the 

threshold change may occur or not. To overcome this problem, 

we decided to embed in the pixel the bit value that causes the 

threshold change and to inform the extractor of that situation 

by inserting another flag bit set to 1 along with the message. At 

the decoding stage, the extractor knows that the change occurs 

on a carrier prediction-error and will not consider the 

embedded bit as part of the message. It will restore such a 

pixel according to this rule.  

To summarize, the DPEHS overhead contains: four flag bits 

indicating if T
r
min ≠ Tmin and T

r
max ≠ Tmax and if the change 

occurs or not on carrier prediction-error. If necessary, Tmin 

or/and Tmax are also encoded in the overhead. Thus, our 

overhead is of very small size. This contributes to the better 

performance of our system in terms of capacity.  

 

C. DPEHS and distortion minimization  

In order to minimize the distortion, we also propose two 

other refinements or constraints to be satisfied by DPEHS 

watermarkable pixels (or blocks). Firstly, like Sachnev et al. 

and some others [11] [13], we do not watermark blocks or 

pixels of too large estimator biases. These pixels belong to 

highly textured blocks. They can be identified through the 

standard deviation from their block of reference. Thus p
k
i,j (or 

B
k
) is watermarkable if it also satisfies  

k

stdB̂ < Tstd     (8) 

where 
k

stdB̂ is the standard deviation of ˆ kB and Tstd is a 

threshold we define in this study as the standard deviation 

mean of all reference blocks. Contrary to Sachnev et al. [11] 

and others [13], our extractor will retrieve Tstd, computing it by 

itself, and will achieve the same classification.  

Along the same line, we do not DPEHS watermark blocks 

which carrier-class Cc cannot be identified accurately. These 

blocks are characterized by a prediction-error neighborhood of 

high standard deviation 
k

stde . Thus p
k
i,j is modified if  

k

stde < Te               (9) 

where Te corresponds to the mean of {
k

stde } over the whole 

image. It is important to notice that, the prediction-error 

neighborhood considered here is the same as in section II-B. 

This one is computed replacing in eq. 2 the value of pixels 

considered for embedding by their predicted values.  

D. Overall scheme  

To sum up, our algorithm runs through the image between 

one and four times. Each embedding pass is conducted 

independently from the other on one quarter of the image 

pixels considering the following procedure:  

1. Considering a specific run into the image, possibly based 

on a secret key, pixels are classified into PHS region or 

DPEHS region. For that purpose, pixels are estimated 

using eq. 2.  

2. One part of the message is embedded in the PHS region 

along with some overhead in case of 

overflows/underflows (see section III.B).  

3. The rest of the message is embedded into the pixels of the 

DEPHS region according the following steps: 

a. Step 1: as depicted in section III.B, the classification 

thresholds Tmin and Tmax are computed in order to 

discriminate watermarkable pixels from the others. At 

the same time the embedder verifies if the extractor will 

find or not the same thresholds. For that purpose, the 
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watermark W=[ 1, 0, 0, 0, 0, 0, 0, 0, 0] is considered 

while each pixel is associated with a reference block of 

3x3 pixels using the matrix A (see section III.B). Pixel 

prediction-errors as well as prediction-error 

neighborhoods are also computed (see section II-B). 

This information is necessary to the embedder so as to 

manage threshold changes (i.e. to know if the changes 

occur on a carrier prediction-error or a non-carrier 

prediction-error). At the end of this process, the 

embedder builds the message overhead (flags 

concatenated with the values of Tmin and Tmax in case 

T
r
min ≠ Tmin and T

r
max ≠ Tmax) and computes the 

thresholds Tstd and Te (see section III.C).  

b. Step 2: message embedding is conducted in one or two 

stages depending if T
r
min ≠ Tmin and T

r
max ≠ Tmax and 

on the value of Tstd and Te. 

At the reading stage, in the case the matrix A is predefined, 

the only parameter the extractor needs to know is the 

histogram shifting amplitude Δ which parameterizes PHS and 

DPEHS as well as the classification processes (see sections 

III.A and III.B). Notice that in this scheme, the value of Δ is 

fixed by the user. Message extraction is conducted 

independently in each region and pass. For the DPEHS 

message, the extractor will retrieve by itself the values of Tmin, 

Tmax, Tstd and Te and will apply or not a two-stage message 

extraction process (see section III.B).  

IV. EXPERIMENTS  

A. Image database and measures of performance 

The previous watermarking scheme has been tested and 

compared with some recent methods [9-12]. All have been 

applied to several natural grayscale images (like Lena and 

Baboon (see Fig. 4), used as reference in the literature), and 

different series of medical images issued from five distinct 

modalities. These image sets, illustrated in Fig. 5, contain 

respectively:   

 three 12 bit encoded Magnetic Resonance Image (MRI) 

volumes of 79, 80 and 99 axial slices of 256x256 pixels 

respectively;  

 three 16 bit encoded Positron Emission Tomography 

(PET) volumes of 234, 213 and 212 axial slices of 

144x144 pixels respectively;  

 three sequences of 8 bit encoded Ultrasound (US) images. 

The first sequence contains 14 images of 480x592 pixels, 

and the two others 9 and 30 images of 480x472 pixels 

respectively;  

 forty two 12 bit encoded X-ray images of 2446x2010 

pixels, and;  

 thirty 8 bit encoded retina images of 1008x1280 pixels.  

To objectively quantify achieved performance, different 

criteria have been considered:  

- the capacity rate C expressed in bpp (bit of message per 

pixel of image);  

- and, the Peak Signal to Noise Ratio (PSNR) so as to 

measure the distortion between an image I and its 

watermarked version Iw 

 
    

)
,,

12
(log10

,

1,1,

2

2

10

 





MN

ji w

d

jiIjiI

NM
PSNR              (10) 

where d corresponds to the image depth and N and M to 

the image dimensions.  

In the following experiments, the embedded message is a 

binary sequence randomly generated according to a uniform 

distribution.  

B. Experimental results 

Results are given in Tables I-III and in Fig. 6 in terms of 

capacity and image distortion depending on: the pixel shifting 

magnitude ∆ (see section II); and the number of times our 

algorithm goes through the image (between 1 and 4 times, see 

previous section).  

Results for natural images are given in Table I and Fig.6, 

where we compare our technique with the four other schemes 

proposed in [9-12]. Presented curves have been obtained 

making varying ∆ and the number of embedding passes 

progressively. Notice that the method of Hwang et al. [12], 

derived from the scheme of Sachnev et al. [11], is actually the 

best algorithm reported today. As can be seen from Fig. 6, our 

method provides a better capacity/distortion compromise than 

                           
(a)                                         (b)                                          (c)                                             (d)                                               (e) 

Fig. 5. Image samples from our different medical image test sets: (a) 12 bit encoded MRI axial slice of the head of 256x256 pixels; (b) 16 bit encoded PET 

image of 144x144 pixels; (c) 8 bit encoded ultrasound image of 480x592 pixels,; (d) 12 bit encoded X-ray image of 2446x2010 pixels; (e) 8 bit encoded 

retina image of 1008x1280 pixels. 

      
(a)                            (b) 

Fig. 4. Natural test images, grayscale images of 512x512 pixels: (a) 

Lena, (b) Baboon. 
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any of these methods [9-12] for low and medium capacities 

(i.e. capacities smaller than 0.4 bpp). For example, for a 

capacity of 0.15 bpp, our approach provides a PSNR of 55.72 

dB for Lena, a PSNR value about 2.8 dB higher than [12]. 

From Table I which sums up results obtained for high PSNR 

values, most of the time our method allows twice the capacities 

obtained by Sachnev et al. [11] and about 1.3 the capacities of 

Hwang et al. [12]. Most of the gain our scheme is issued from 

our dynamic histogram shifting modulation. This can be seen 

from the Lena image. Indeed, because this latter does not 

contain black areas, only our DPEHS modulation applies for 

message embedding. It is quite the same for Baboon. 

Nevertheless, for a capacity rate greater than 0.4bpp, our 

scheme is less efficient than [11] and [12] or than methods 

presented in [16][17] which are even better.  

For medical images, the results are somewhat equivalent to 

those obtained for natural images. Compared to [9-12], our 

approach better preserves the image quality for the same 

capacity rate, as indicated in Table 2. If we go into detail (see 

Table III), our gain is about 1.5-2 dB and 4-5 dB of PNSR 

compared to [12] and [11] respectively. However, our 

approach has somewhat equivalent performance for PET 

images. Such a similarity can be explained by the fact that the 

strategies followed by [11] and [12] have close performance to 

that of PHS in the image black background which herein 

occupies a large part of the image (see the sample depicted in 

Fig.5b). Again and like for natural images, the gain of our 

scheme is issued from the better behavior of our DPEHS 

modulation within areas where the signal exists (herein the 

anatomical object). Nevertheless, whatever the medical image 

modality, our method proposes the best compromise in terms 

of image quality preservation for low and medium capacities.  

 
Fig. 6.  Embedding capacity (C) versus image distortion (PSNR) of our approach in comparison with the reversible schemes [9-12]. The test set is constituted of 

grayscale image Lena and Baboon.  

TABLE I 

COMPARISON ASSESSMENT IN TERMS OF CAPACITY AND DISTORTION FOR OUR APPROACH AND THOSE PROPOSED BY: SACHNEV ET AL. [11], HWANG ET AL. 

[12]. THE TEST SET IS CONSTITUTED OF GRAYSCALE IMAGE LENA, BABOON. 

∆ = 1 
use of ¼ of the image I use of ½ of the image I use of the whole image I  

C PSNR C PSNR C PSNR 

 

Lena 

[11] 0.02 61.42 0.04 58.51 0.09 55.29 

[12] 0.03 61.54 0.08 56.78 0.11 54.58 

Proposed 0.04 61.375 0.078 58.545 0.15 55.72 

 

Baboon 

[11] 0.005 63.66 0.01 60.46 0.02 57.11 

12] 0.01 62.92 0.01 60.80 0.03 56.97 

Proposed 0.0127 63.026 0.025 60.077 0.049 57.167 

 
TABLE II 

COMPARISON ASSESSMENT IN TERMS OF CAPACITY AND DISTORTION OF OUR APPROACH AND THOSE PROPOSED BY THODI ET AL. [9], PAN ET AL. [10], 

SACHNEV ET AL. [11] AND HWANG ET AL. [12]. RESULTS ARE GIVEN IN AVERAGE PER IMAGE WITH THEIR STANDARD DEVIATION BETWEEN PARENTHESES. 

 
MRI PET US 

 

C (bpp) PSNR (dB) C (bpp) PSNR (dB) C (bpp) PSNR (dB) 

 [9] 0.0214 (0.004) 72.41 (0.168) 0.13 (0.025) 97.27 (0.30) 0.22 (0.09) 48.44 (0.769) 

 [10] 0.006 (0.004) 78.62 (0.82) 0.029 (0.02) 101.31 (1.06) 0.2 (0.02) 51.1 (0.34) 

 [11] 0.25 (0.005) 74.81 (0.15) 0.17 (0.023) 105.18 (0.5) 0.15 (0.05) 52.75 (0.55) 

[12] 0.25 (0.005) 78.00 (0.25) 0.17 (0.02) 105 (0.5) 0.15 (0.05) 55.00 (0.5) 

Proposed 0.25 (0.005) 79.06 (0.5) 0.17 (0.03) 105.35 (0.5) 0.16 (0.03) 57.067 (0.4) 
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V. CONCLUSION 

In this paper, we have proposed a new reversible 

watermarking scheme which originality stands in identifying 

parts of the image that are watermarked using two distinct HS 

modulations: Pixel Histogram Shifting and Dynamic 

Prediction Error Histogram Shifting (DPEHS). The latter 

modulation is another original contribution of this work. By 

better taking into account the signal content specificities, our 

scheme offers a very good compromise in terms of capacity 

and image quality preservation for both medical and natural 

images. This scheme can still be improved. Indeed, like most 

recent schemes, our DPEHS can be combined with the 

expansion embedding (EE) modulation, as well as with a better 

pixel prediction. However, this method is fragile as any 

modifications will impact the watermark. Even though some 

solutions have already been proposed [18][19], questions 

about watermark robustness are largely open. This is one of 

the upcoming challenges. 
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