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Abstract—To improve medical image sharing in applications
such as e-learning or remote diagnosis aid, we propose to make
the image more usable by watermarking it with a digest of its as-
sociated knowledge. The aim of such a knowledge digest (KD) is
for it to be used for retrieving similar images with either the same
findings or differential diagnoses. It summarizes the symbolic de-
scriptions of the image, the symbolic descriptions of the findings
semiology, and the similarity rules that contribute to balancing
the importance of previous descriptors when comparing images.
Instead of modifying the image file format by adding some extra
header information, watermarking is used to embed the KD in the
pixel gray-level values of the corresponding images. When shared
through open networks, watermarking also helps to convey relia-
bility proofs (integrity and authenticity) of an image and its KD.
The interest of these new image functionalities is illustrated in the
updating of the distributed users’ databases within the framework
of an e-learning application demonstrator of endoscopic semiology.

Index Terms—Medical image security, medical image sharing,
medical knowledge management, reversible watermarking.

I. INTRODUCTION

M EDICAL image sharing is used in a wide variety of ap-
plications ranging from telediagnosis to telesurgery, and

it also promotes applications such as remote diagnosis aid and
e-learning. These two latter applications are made possible by
the ability to compare images to previously diagnosed examina-
tions [1]. Beyond image comparison, similarity search between
examinations requires medical knowledge representation.

Inspired by medical practice, we have defined a bilevel–
diagnosis and findings—description language in endoscopy in
order to unify the representation of diseases and cases. Based
on this analysis of the diagnostic reasoning process, we derived
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Regional Council of Brittany under Project SPROGIMMAD.

G. Coatrieux and C. Roux are with the Institut Télécom, Télécom Bretagne,
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et de Recherche Médicale (INSERM) U650, Brest 29609, France (e-mail:
clara.leguillou@chu-brest.fr; jean-michel.cauvin@chu-brest.fr).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TITB.2008.2007199

a decision aid system: an advanced endoscopic atlas [2], [3],
which exploits the image semantic content to suggest consis-
tent diagnostic hypotheses illustrated by cases relevant to the
problematic case description. This system relies on two bases.
The first one defines endoscopic knowledge and the second one
corresponds to the base of cases—images with their symbolic
description. The relevant case retrieval first consists of a clas-
sification process based on endoscopic knowledge in order to
identify potential cases within the same class as the problematic
case. Cases that belong to the eligible diagnostic classes are then
selected and sorted according to their similarity with the prob-
lematic case. This system, resulting from a previous work [3],
is at the midpoint between pattern recognition [4] and case base
reasoning paradigms [5].

This knowledge base, and in particular the finding level, rep-
resents the first attempt to define an endoscopic finding semi-
ology. In this paper, our concern is to promote and spread this
expertise. The basic principle of our approach is to share a med-
ical image with a knowledge digest (KD). The proposed KD
gives a synthetic medical description and interpretation of the
image content. In the framework of an e-learning application
demonstrator project, this digest will constitute the distributed
knowledge and will thereafter be exploited in order to: 1) up-
date the user’s case and knowledge bases and 2) provide the
means for similar image retrieval with either the same findings
or differential diagnoses.

To share medical images with some concomitant data, one ap-
proach involves adding, when allowed by the image file format,
some extra header information. Unfortunately, header files are
prone to manipulation and information loss may occur during
file format conversion. For example, most data contained in the
header of a Digital Imaging and Communications in Medicine
(DICOM) [6] image file will be lost after conversion into an-
other multimedia format like Joint Photographic Experts Group
(JPEG).

In our scheme, we have opted for watermarking to share
data [7]. When watermarking is applied to images, it allows
the insertion of a message by modifying the pixel gray-level
values of the image in an imperceptible manner. The embed-
ded information is attached to the signal itself, independently
of the image file format, introducing information management
and protection levels as near as possible to the data [8]. It is usu-
ally required that the watermarked information remains hidden
from any unauthorized user (as with data encryption, a secret
key is needed to access the watermark content). In addition,
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distortions due to the watermarking should not interfere with
the use of the watermarked object. For medical images, the
image interpretation should not be altered. Among the differ-
ent approaches proposed for watermarking medical images [8],
we have retained lossless or reversible watermarking. The re-
versibility property allows the removal of the watermark from
the image and the exact retrieval of the original image.

In the present e-learning application, lossy compressed en-
doscopic images are shared. If there is no impediment to using
a slight lossy compression, since it does not impair the physi-
cian’s interpretation [9], reversible watermarking has attractive
properties in terms of not further compromising image interpre-
tation. For that purpose, we extend an improved version of the
reversible watermarking method we proposed in [10] for raw
images to JPEG-compressed images.

Hence, suggested KD and watermarking are jointly exploited
at the database level of our demonstrator. At the same time,
since such information is used to update databases through open
networks like the Internet, it should be possible to verify the re-
liability of the image and its KD. Hence, the message that is
watermarked also provides data integrity and authenticity con-
trol as it contains a digital signature computed on both the image
and its KD, along with the date of creation and an authenticity
code (i.e., proof of data origins).

To our knowledge, this paper is the first that proposes to
embed metadata that are not an element of the electronic patient
record (EPR) or data for protecting the image.

The rest of this paper is organized as follows. In Section II,
medical knowledge representation and the proposed KD defini-
tion are discussed. In Section III, our reversible watermarking
scheme and its adaptation to JPEG-compressed images are pre-
sented. Section IV is devoted to the constitution of the KD
watermark and the architecture of the e-learning demonstra-
tor for endoscopic semiology. Concluding remarks are given in
Section V.

II. MEDICAL IMAGE KNOWLEDGE IN DIGESTIVE ENDOSCOPY

Before presenting the KD structure, we summarize the key
points about information representation and reasoning in di-
gestive endoscopy, a representation we have considered in our
advanced endoscopic atlas and on which the KD relies.

A. Endoscopic Information and Reasoning

1) Information Representation: Mechanisms that allow en-
doscopists to go from observation to endoscopical findings and
from endoscopical findings to endoscopical diagnosis make use
of their varied knowledge, including that acquired by train-
ing and experience: anatomic knowledge of the normal and
surgically modified digestive cavity, knowledge of elementary
descriptors of endoscopical findings, and knowledge of the com-
bination of endoscopical findings and the medical context.

In this framework, we have developed a bilevel description
language of endoscopic imaging and of gastroenterology dis-
eases. This language is partly based on the minimal standard
terminology of the European Society of Gastroenterology [11]
and handles the symbolic content of images with respect to en-

Fig. 1. Example of a finding object. Finding features are in black boxes and
just below in gray their possible “attributes” (i.e., values). Color variations
indicate the linguistic valuation (LV) of the attributes.

doscopy imaging. For further details, the reader may refer to [3].
However, this language exemplifies the concept of Scenes with
Objects.

1) The Scene represents the disease level. It is an endoscopic
diagnosis that associates one patient context with one or
several endoscopic finding(s) and their spatial relations.

2) The Object represents the finding level. It is a finding
diagnosis in a scene and is described through different
features.

Here, the symbolic description of one finding rests on 33
features. One feature can take different values that we call at-
tributes. For example, in Fig. 1, the feature “color regularity”
can be described as “regular” or “irregular.” Based on clinical
expertise, 206 attributes are currently considered [3].

2) Knowledge and Case Bases: This representation of the
endoscopic information and this language have resulted in the
creation of a knowledge base and a case base.

The knowledge base gives an a priori description of 150
scenes (diseases) and 100 objects (endoscopic findings). For one
object or finding in this base, an LV is assigned to each of its
attributes. With LV values, the expert expresses his knowledge
while instilling uncertainty or vagueness [12]. More precisely,
an object feature can be judged as: 1) without interest, then all
its attributes too; 2) impossible, then all its attributes too; and 3)
of interest, then each attribute is denoted as never, exceptional,
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Fig. 2. Knowledge digest.

rare, frequent, always, or at least doubtful when the choice
between never and exceptional cannot be stated. An example of
such a finding description is given in Fig. 1. It can be seen that
a finding is identified with a code and a label. We also retrieve
the 33 features and their corresponding attributes with assigned
LV values.

Scenes are described in a similar way in this base. They are
depicted by the objects, the possible spatial relations between
these objects, and by a patient profile (gender and age prevalence
features as well as a predefined set of clinical contexts).

The case base is constituted of indexed images, each repre-
senting an endoscopic diagnosis with one or more findings. In
this base, one finding is described using the 206 attributes: the
finding description. As one image illustrates a particular real-
ization of one finding, there is no uncertainty in the valuation of
the attributes. Consequently, each attribute is set to true or false
if it describes the finding.

3) Reasoning With Knowledge and Cases: For a new sit-
uation, the similar case retrieval starts by identifying potential
findings, based on the knowledge base and the description of the
problematic case. Then, disease classes are identified through
all possible combinations of identified findings. The next step
reevaluates the ranking of potential findings in the context of po-
tential diseases. Then, the classification process is carried out.

The retrieval process is completed by searching among these
potential classes of diseases and findings, the most similar cases
in the case base. For this task, the description of the problematic
case is compared, feature to feature, with case descriptions in
the case base. This comparison makes use of similarity rules
that express the relationships between the different attributes of
the same feature. Two attributes of the same feature are judged
as incompatible, not similar, slightly similar, fairly similar, or
identical. The rules are represented by double entry tables. There
are at least 33 of these tables.

At the end of this retrieval, potential findings and dis-
eases similar to the problematic case are illustrated with case
examples.

B. Knowledge Digest (KD)

In this context and in the spirit of case base reasoning (see
Fig. 2), one KD is associated to one image, considering that
it must be sufficient to retrieve similar images with either the
same findings or differential diagnoses. For that purpose, one
KD synthesizes the symbolic descriptions of one image, those
of the findings semiology as the similarity rules.

As illustrated in Fig. 3, the KD structure is composed of a
diagnosis code, and for each identified finding, a date, a code,

Fig. 3. Knowledge digest structure.

and its related finding KD. The “finding date” will be used
in the updating routines of the demonstrator knowledge (see
Section III).

The finding KD is represented by three vectors: the finding
description vector, the finding semiology vector, and the simi-
larity rules vector. Each of these has 206 components, and one
component is associated with one attribute (see Section II-A2).
The finding description vector is a binary vector whose com-
ponents are set to “1” if the corresponding attributes describe
the finding or to “0” on the contrary. The finding semiology
vector translates the knowledge we have about the finding. Each
of its components takes its value between 0 and 5 representing
the LV valuation from “never” to “always” (see Section II-A2).
The third vector corresponds to the similarity rules described in
Section II-A3. Each value, from “incompatible” to “identical,”
is associated with a numerical value 0, 1, 2, 3, or 4.

Like the image, the KD with its synthetic representation of en-
doscopic information is language-independent, unlike the glos-
sary that allows its interpretation. We propose to share such a
KD with its associated image. The KD is a tool from which dy-
namic learning scenarios can be elaborated so as to surf between
similar images with either the same or differential diagnoses.

III. ENHANCING IMAGE FUNCTIONALITIES

WITH WATERMARKING

Watermarking integrates metadata and/or protection data in
an image by modifying its pixel gray-level values. It provides
an original way to share related data, like an image and its KD.

The method we use is lossless or reversible. This means that
the watermark can be suppressed from the image. The method
we summarize shortly is an improved version of that described
in [10] and [13]. This method is now parameter-free and adapted
in this paper to lossy JPEG-compressed images.

A. Reversible Watermarking Scheme

Our scheme is additive; it derives from the message to be
embedded a watermark signal that is added to the image I . This
digital signal consists of a matrix constituted of negative or pos-
itive integer values. Because of the limited image depth (2p − 1
possible gray levels for a p-bit depth image), the watermark
signal, once added to the image, can introduce underflows and
overflows [14], i.e., pixels with a gray value outside the range
[0, . . . , 2p − 1]. For example, within an image of 8-bit depth,
subtracting one gray level from a pixel of gray value 0 will
give a negative value that cannot be encoded: it is an underflow.
Hence, not all of the image pixels can be watermarked.
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Fig. 4. Reversibility principle of our method: a classifier decides if one block
Bj can be watermarked without introducing an underflow or an overflow.

As depicted in Fig. 4, to prevent underflows and overflows,
our scheme makes use of a pixel block classification to dis-
tinguish watermarkable and nonwatermarkable blocks in the
image. Nonwatermarkable blocks are those that will introduce
an overflow or an underflow if they are watermarked. Hence,
nonwatermarkable blocks will not be modified, while the inser-
tion process will proceed with embedding the message in the
watermarkable blocks. At the detection stage, to ensure retrieval
of the watermarked blocks from the watermarked image Iw , this
classification is built on an image estimation invariant to the in-
sertion process. Unless the watermarked image is modified, the
watermarked reader will retrieve the classifier easily.

For this experiment, our method works in the following way.
Image I is separated into 2 × 2 pixels blocks {Bj}. If one block
Bj = [x0j , x1j , x2j , x3j ] is watermarkable, it will be modified
to Bjw by adding or subtracting a known watermark pattern W ,
herein defined as:

W =
[

δ0 δ1

δ2 δ3

]
=

[
1 −1
−1 1

]
. (1)

For the classification process, each pixel of a block Bj is esti-
mated though a linear combination of all the pixels of Bj leading
to B̂j = [x̂0j , x̂1j , x̂2j , x̂3j ], where:

x̂0j =
[2x0j + x1j + x2j ]

4

x̂1j =
[2x1j + x0j + x3j ]

4

x̂2j =
[2x2j + x0j + x3j ]

4

x̂3j =
[2x3j + x1j + x2j ]

4
. (2)

As stated earlier, B̂j remains unchanged if W is added to or
subtracted from Bj (i.e., B̂j = B̂jw ).

The classification process involved aims at differentiating
blocks for which the addition (or subtraction) of W leads to an
overflow or an underflow from the others. Each block Bj will be
classified depending on two values (B̂j

min , B̂j
max) derived from

B̂j and used to avoid underflow and overflow, respectively:

B̂j
min = min

i=0,...,3
{x̂ij , x̂ij ∈ B̂j}

B̂j
max = max

i=0,...,3
{x̂ij , x̂ij ∈ B̂j}. (3)

From this block characterization, the classifier consists of
two thresholds (Tmin , Tmax) computed on the Nu blocks at the
origin of an underflow and the No blocks at the origin of an
overflow:

Tmin = max
i=0,...,Nu

{B̂i
min}

Tmax = min
i=0,...,No

{B̂i
max}. (4)

Consequently, the watermarkable blocks are those whose char-
acteristics satisfy B̂j

min > Tmin and B̂j
max < Tmax .

At the detection stage, the watermark reader applies the same
procedure in order to retrieve the classifier. However, in a few
cases, the thresholds are changed after the insertion process
making the message retrieval impossible. To overcome this is-
sue, our scheme embeds the message in two steps. First, the
embedder considers the thresholds that the watermark reader
will identify and inserts the original values Tmin , Tmax and one
part of the message in the corresponding blocks. The rest of the
message is then embedded by modifying the last watermarkable
blocks.

Once the watermarkable block set is identified, a binary mes-
sage M is inserted according to the following procedure.

1) Watermarkable blocks are ordered secretly depending on
a user’s secret watermarking key.

2) For one block Bk , one pixel x0k is selected and compared
to its estimate x̂0k :
a) If ‖x0k − x̂0k‖ < 1, then Bk is able to convey 1 bit b

of M . Bk is called a carrier block and is modified in
the following manner:

if b = 1, then Bkw = Bk + W =⇒ x0kw > x̂0k

if b = 0, then Bkw = Bk − W =⇒ x0kw < x̂0k .

(5)

At the detection stage, the watermark reader has to
interpret only the relationship between x0k and x̂0k to
decode the message and restore Bk .

b) If ‖x0k − x̂0k‖ ≥ 1, then Bk is called a noncarrier
block as the relationship between x0k and x̂0k cannot
be modified. For such a block, the distance between
x0k and x̂0k is increased by adding or subtracting W .

At detection, once the classifier is rebuilt and the watermark-
able blocks are retrieved and reordered, the watermark reader
restores the blocks by adding or subtracting the pattern W de-
pending on the relationship between x0kw and x̂0k . These rela-
tionships also help to reidentify carrier blocks, and consequently,
read the watermarked message.

This method is parameter-free and minimizes image distor-
tion. However, message and exact image recovery are possible
only if the watermarked image has not been modified, since the
watermark is fragile.

B. Extension to JPEG-Compressed Images

JPEG [15] is a popular and well-known standard for image
compression that allows two compression modes, namely, loss-
less and lossy. The first reduces only the image file size through
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an entropic encoding, while the second, which we consider
hereafter, authorizes some information loss according to an in-
teger quality factor δ ∈ [0, . . . , 100]. As δ decreases, the com-
pression file size ratio increases and the image quality is less
well preserved.

As mentioned earlier, the previous watermarking method is
fragile. Message extraction and watermark removal will not be
possible after the image has been altered. Consequently, this
method cannot be applied before lossy compression but after
the information loss has occurred. Hence, embedding will be
performed in the information preserved after compression. For
JPEG, this information is located in the frequency domain.

For color images, the JPEG algorithm starts by an image
color transformation into the YUV space. For each block of
4 pixels, there are four samples of luminance information (Y)
and one sample of each of the two chrominance components
(U and V). Each color component is treated independently. The
process continues by splitting the image (or one color com-
ponent) into 8 × 8 pixel blocks. A discrete-cosine transform
(DCT) is then applied to each block, leading to blocks of 8 × 8
transformed coefficients Cnm :

Cnm =
7∑

i=0

7∑
j=0

Φ(i, j)αiαjBij (6)

where Bij corresponds to one pixel of the block with:

n = 0, . . . , 7 m = 0, . . . , 7

Φ(i, j) = cos
(

π(2i + 1)j
16

)
cos

(
π(2j + 1

16

)

αi =

√
2
16

, i �= 0; α0 =

√
1
16

.

One coefficient Cnm is associated with a spatial frequency
(n,m). C00 , also called the dc coefficient, is proportional
to the mean gray-level value of the block. The remaining of
the coefficients (AC coefficients) take their value in the range
[−1024, . . . , 1023]. This has its importance because it limits the
signal dynamics. Hence, embedding in the frequency domain is
also subject to overflow and underflow.

In the compression process, information loss is achieved by
applying a uniform quantization to each coefficient. The quanti-
zation step varies from one coefficient to another and is derived
from a standard quantization table Q modulated by the qual-
ity factor δ. Once the quantization process is done, entropic
encoding is applied to quantized DCT coefficients in order to
constitute the JPEG bitstream. Hence, to reversibly watermark
JPEG images, our method will be applied after the information
loss, i.e., on the integer values Cq

nm that are the quantized DCT
coefficients:

Cq
nm = �Cnm /Qδ (n,m)�. (7)

The adopted strategy embeds parts of the message inde-
pendently in several coefficient planes. A coefficient plane
Pnm groups all the image coefficients of the same spatial fre-
quency (n,m), with coefficient values varying in the range:

Fig. 5. Illustrative examples. (a) Barrett esophagus. (b) Esophagitis. (c) Nod-
ules. (d) Stenosis. (e) Tumor. (f) Polyps.

[�−1024/Qδ (n,m)�, . . . , �1023/Qδ (n,m)�]. Hence, our wa-
termarking algorithm remains the same for one-coefficient
plane; only the thresholds Tmin and Tmax that control under-
flows and overflows have to be refined according to this interval.
Note that each time the image is recompressed with a different
quality factor the watermark signal will have to be recomputed.

Depending on the message length, the number of water-
marked coefficient planes may vary in order to reach the re-
quirement in terms of capacity (i.e., the number of bits to be
embedded within one image). As a consequence, the watermark
may become more or less visible depending on the number of
coefficient planes used for embedding. Hence, the performance
of the method depends on the size of the message, the dimen-
sions, and the content of the image. The KD structure takes this
into account.

IV. ENDOSCOPIC SEMIOLOGY E-LEARNING APPLICATION

The proposed KD and watermarking abilities have been
jointly experimented at the database level of an e-learning
demonstrator for endoscopic semiology. This system shares
lossy compressed endoscopic images that give illustrative ex-
amples of eight distinct diseases (see Fig. 5): Barrett esophagus,
esophagitis, nodules, stenosis, tumor, polyps, ulcer, and varices.

Currently, the system makes use of JPEG compression. Some
studies have been conducted with endoscopic images to evaluate
the ratios of compression that are acceptable in order to reduce
the data volume while maintaining quality for clinical review. It
has been shown in [16] that no subjects could tell the difference
between original noncompressed images and 1:10 lossy JPEG-
compressed images.

In this application, knowledge digests are shared with im-
ages through fragile watermarking. This may not be common
as fragility is a property usually required for image integrity
verification. For metadata watermarking, the need for robust
insertion in opposition to fragile insertion depends on the ap-
plication framework. In our medical context, the KD may no
longer be representative of the image if the latter is modified.
Consequently, fragile watermarking is acceptable in this case.

In the next section, we present and discuss KD embedding,
and thereafter we introduce the system architecture and some
scenarios of use.
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Fig. 6. KD message organization.

A. Watermarking Endoscopic Image Knowledge

The KD associated with a single image will in fact be con-
verted to the smallest possible binary string before its inser-
tion. The smaller the KD, the less visible the watermark (see
Section III). As shown in Fig. 6, the KD to be watermarked con-
tains the total message length, the diagnosis code, the number of
identified findings, and, for each finding, the finding’s code and
length followed by the finding KD itself. In order to minimize
the size of the whole message to be embedded, the three find-
ing KD vectors (see Section II-B) are compressed before being
binarized.

In general, images display one or two lesions, exceptionally
three. Thus, the average size of the image KD is between 1000
and 2000 bit, reaching a maximum of 3500 bit.

In our experiments, a test set of 750 images was consid-
ered. We first decided to apply the insertion process only to
the Y component of JPEG-compressed images. However, the
proposed scheme can easily be extended to the three color
components.

As described in Section III-B, our algorithm adaptively
chooses a set of coefficient planes {Pnm} to reach the capacity
requirement for message embedding. The capacity depends on
the number of coefficient planes retained and also on the image
size and content. Over the whole image test set, the smallest,
average, and maximum capacities, expressed in bits of message
per image pixel (bpp), considering the set of coefficient planes
ζ = {Pnm /n = 0, . . . , 3;m = 0, . . . , 3; (n,m) �= (0, 0)}, are,
respectively, 0.028, 0.046, and 0.0552 bpp. For an image of
368 × 368 pixels, the smallest message we may expect to em-
bed is around 3700 bit.

The reversibility of our method guarantees that once the wa-
termark is removed, the image distortion observed is only due
to the compression information loss. However, keeping the wa-
termark in the image leads to more distortion. Here, we make
use of the peak SNR (PSNR) in order to quantify the distortion
between the original JPEG image I and its watermarked version
IW :

PSNR(I, IW ) = 10 Log10

(
NM(2p − 1)2∑N,M

n,m=1,1(Inm − IW nm )2

)

(8)
where p, N , and M correspond to the image depth and dimen-
sions, respectively.

Considering the same experiment as previously, we have
found the smallest, average, and maximum distortion to be (con-
sidering the image Y component) 37.4, 37.68, and 39.67 dB, re-
spectively. However, in practice, capacity requirements are sat-
isfied for images of dimensions 480 × 640 pixels with a PSNR

Fig. 7. Example of an image watermarked with its KD. (a) Original image
of 365×378 pixels. (b) Watermarked image—set of coefficient planes consid-
ered ζ = {Pn m /n = 0, . . . , 2; m = 0, . . . , 2; (n, m) �= (0, 0)}. Capacity =
2373 bits. PSNR = 41.7 dB. (c) Image of difference: the watermark.

of 42.36 dB; only three coefficient planes are used. The water-
marked images were evaluated by one physician involved in the
project. He did not perceive the distortions due to the water-
mark. Hence, we may consider that such distortion results are
considered as acceptable in an e-learning framework. In Fig. 7,
we give an example of an image watermarked with its KD.

Nevertheless, an additional study needs to be conducted in
order to evaluate the possible risks of interference between the
watermark and the image interpretation. This study will com-
bine physicians’ evaluations with other objective measures of
perceptual quality like the normalized rms error (NMRSE) in
order to determine the best parameters of the method. In any
case, the method is lossless and allows us to retrieve the original
compressed image after suppressing the watermark distortion.
This supports the idea that our approach can be used in the
framework of remote diagnosis aid applications.

B. Illustrative use in an E-Learning Demonstrator System

Our demonstrator, under development, is implemented using
Matlab (MathWorks) and an Apache Web Server. It will be an
extension of the Web atlas site (http://i3Se009d.univ-brest.fr/)
[3]. As depicted in Fig. 8, its architecture is based on a Web
server that gives access to an image database through a Web
site publicly available. A user has to access only the appropriate
URL. With Matlab installed on his/her computer, the user will
be able to benefit from the distributed functionalities.

As depicted in Fig. 8, before images are made available on
the Web site, each image is lossy compressed with JPEG at
a predefined factor of quality. At the same time, the image
KD is constituted from the different databases. Both the image
and the KD are the inputs of the “reliability protection and
watermarking” box whose content is described in Fig. 9.

Reliability is maintained through one digital signature (DS)
computed on the image, the KD, the date of creation, and the
Web server authenticity code. This signature will be used by the
user system to verify the reliability of the information, i.e., ver-
ifying integrity and origin of this dataset. In fact, any difference
between this signature and the recomputed one will indicate
that data have been corrupted. In our experiment, we use the
digital signature algorithm (DSA) signature [17] that provides a
160-bit-long DS. This signature produced with the Web server
private key Kpr (this key is only known to the Web server) can
only be verified by making use of the public key Kpu of the
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Fig. 8. System architecture. Before being made available on a public Web
page, one image is watermarked with its KD. Kpr, Kpu, Kw, AC, and date cor-
respond to the private and public keys of the Web server, the watermarking secret
key, the Web server authenticity code, and the KD creation date, respectively.

Fig. 9. Content of the “reliability protection and watermarking” box.

Web server, Kpu will be available and distributed by a trusted
third party.

This DS, the KD, the Web server authenticity code, and the
date of creation are concatenated in a single message that is then
embedded in the JPEG-compressed image. The insertion can be
made secret by using a watermarking secret key Kw , which will
have to be known by the distant user to allow extraction of the
hidden data. The user must, of course, be registered on the Web
server.

Hence, when a user connects to the Web server, all data as
well as watermarked images are publicly available. If he/she
possesses the watermark extractor with the appropriate water-
marking secret key, his/her system will extract the information.

Once the message is extracted, the unwatermarked image (i.e.,
the original compressed image), the KD, the DS, the Web server
authenticity code, and the date of creation are recovered. Then,
the user system checks information reliability by comparing the
extracted DS to the recomputed one. For this task, a third party
is requested to send the public key of the Web server where the
image has been picked up from. This will also help each party to

be authenticated as this key is user-dependent. Hence, if DSs are
different, data integrity is lost and the system rejects the data.
Otherwise, the system updates the user databases.

The watermark extractor, along with empty databases, KD
management functions, and the user’s language glossary will
constitute the plug-in available to the registered user.

V. CONCLUSION

In this paper, we have proposed a new way to share and
enhance medical image functionalities. While watermarking al-
lows the sharing of information independently from the image
format, the proposed knowledge digest gives a synthetic descrip-
tion of the image content, a digest that can be used for retrieving
similar images with either the same findings or differential diag-
noses. KD combined with watermarking appears to be a flexible
solution to provide updates for distant user similarity rules, and
case and knowledge databases.

In this paper, we have also extended a reversible scheme
and applied it to JPEG-compressed images. It preserves image
quality and may enable other useful applications similar to the
e-learning demonstrator presented. Future work will focus on
determining adaptively for any image the method parameters to
ensure watermark invisibility (i.e., coefficient planes to select
for embedding), optimizing the watermarking capacities of en-
doscopic images, in order to integrate more knowledge, i.e., the
disease semiology level, and managing other file image formats
like the recent JPEG 2000 format.
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