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 

Abstract—This work presents the first method of digital blind 

forensics within the medical imaging field with the objective to 

detect whether an image has been modified by some processing 

(e.g. filtering, lossy compression and so on). It compares two 

image features: the Histogram statistics of Reorganized 

Block-based Discrete cosine transform coefficients (HRBD), 

originally proposed for steganalysis purposes, and the Histogram 

statistics of Reorganized Block-based Tchebichef moments 

(HRBT). Both features serve as input of a set of SVM classifiers 

built in order to discriminate tampered images from original ones 

as well as to identify the nature of the global modification one 

image may have undergone. Performance evaluation, conducted 

in application to different medical image modalities, shows that 

these image features can help, independently or jointly, to blindly 

distinguish image processing or modifications with a detection 

rate greater than 70%. They also underline the complementarity 

of these features.  

 
Index Terms— classification, image moments, blind forensics  

 

I. INTRODUCTION 

ITH the development of multimedia and communication 

technologies in complex, distributed and cooperative 

domains like telemedicine, trust one can have in medical data 

becomes critical. Medical images, for which advanced editing 

and sharing tools are proposed, are also concerned. Global 

image processing like filtering can be used by the physician 

during his or her interpretation to raise up some specific pieces 

of image information [1]. But at the same time some specific 

information is put in evidence, one other is masked or 

definitively lost if the process is not reversible. Lossy image 

compression (e.g. JPEG…) acts similarly so as to make 

possible image sharing on low bit rate channels like those 

encountered in telemedicine or to gain in storage capabilities. 

Notice that studies are regularly conducted in order to 

determine the good compromise between compression rate and 

preservation of the image quality for the diagnosis [2][3]. 

Depending on their extent or strength, these processes may 

endanger the diagnosis value of images, by inducing loss of 

critical information. Even though the medical image standard 

DICOM (Digital Imaging and Communications in Medicine - 

medical.nema.org) traces such modifications by means of 

"indicators" in the image file header, it must be known that not 
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all medical image software or devices are fully DICOM 

compliant introducing interoperability and data integration 

issues [4-6]. For instance, only some commercial 

implementations declare their compliance with the security 

profiles of DICOM [7]. These profiles establish for example 

how to verify the integrity of an image with digital signatures 

(see DICOM Part 15 [8]). As a consequence, images can be 

shared without proofs of their authenticity. Thus, how can we 

be sure that an image received by an hospital is really what it 

claims to be? Is it a pristine sensor image or a post-processed 

one? Beyond interoperability issues, stand malevolent acts. It is 

not impossible modifying an image and its header using a 

third-party software in order to mask an error. If a digital 

signature will allow detecting such a situation, it however gives 

no clues about the nature of the modification the image 

undergone and consequently no idea about which information 

has been lost. This is of major concern in a medico legal 

framework when the image comes as evidence. As illustrated, 

one can no longer take the authenticity of images for granted 

and there is a need to inform practitioners that an image is not 

what it claims to be (e.g. an original image or a post-processed 

image). These are the objectives we pursue in this work.  

Among the different solutions for validating the authenticity 

of an image, "blind forensics" techniques have recently 

attracted attention. They look at the detection of an image 

modification without any a priori knowledge about the image 

under observation (e.g. a signature stored or shared with the 

image). A large group of “blind forensics” methods are based 

on classifier mechanisms built on some image features so as to 

recognize modification footprints. Most image feature sets 

from the literature have been first proposed for the steganalysis 

purpose [9-11]; that is detecting the presence of secret message 

embedded in images; and, next for image authentication 

[12-15] but only in the case of natural images, i.e. images for 

the general public. In fact, steganography acts like image 

processing. It affects more or less the image content while not 

carrying out perceptible distortions [15]. Recently, for the 

steganalysis purpose only, Liu et al. [16] designed an image 

feature set from the Histogram statistical properties of 

Reorganized Block-based Discrete cosine transform 

coefficients (HRBD) which outperforms other strategies [16]. 

In this work, we experiment and extend their approach within 

the framework of medical image authentication while working 

with the Tchebichef moments in addition to the DCT 

coefficients. We thus propose a new image feature set, the 

HRBT. Moreover, in this work, we decided to go further than 

simply detecting an image undergone or not some “global” 

image modification. We also aim at discriminating the nature of 

the modification. The rest of this paper is organized as follows. 
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Section 2 remembers the basic principles of classifier based 

blind forensic mechanisms and presents the HRBD and HRBT 

image feature sets. Section 3 provides some experimental 

results obtained independently with HRBD and HRBT features 

and with their combination on different medical image 

modalities: X-Ray, Ultrasound and Magnetic Resonance 

Imaging. Conclusions are given in section 4. 

II. BLIND IMAGE FORENSICS  

A. Basic Principles 

To catch up evidence left by image processing, one approach 

consists in training a classifier which uses as input some image 

features normally altered by image modifications. Once the 

classifier trained, one just has to extract these features from one 

image under investigation and provide them to the classifier for 

analysis. Efficiency of such an approach largely depends on: i) 

the design of proper image features and, ii) the way the 

classifier is built. In this work, in order to only evaluate image 

feature performance, we use Support Vector Machines (SVM) 

[17]. This choice stands on the fact that SVM have shown 

superior classification performances in many applications 

[18][19].  

In our context, our primary objective is to distinguish 

modified images from original ones (i.e. not modified). To 

achieve this goal, we have trained different binary SVM 

classifiers or "detectors" (e.g. original images vs. JPEG 

modified images, original images vs. filtered modified images, 

and so on) using the HRBT or HRBD features. An image is 

declared unauthentic, if at least one of these classifiers notifies 

it. Secondly, for the purpose of determining the type of the 

modification, we build a multi-class classifier based on 

One-Versus-One (OVO) binary classifiers, each of which 

discriminates images modified accordingly to two kinds of 

possible modifications (e.g. JPEG vs. Filtering, JPEG vs. 

Contrast adjustment, Contrast adjustment vs. Scaling and so on). 

By analyzing the responses of these classifiers, a multi-class 

conclusion is drawn. Among the different strategies for 

combining decisions of binary classifiers, the Max-Wins 

Voting (MWV) is one of the most commonly used approaches 

[20]. MWV assigns an instance to a class which has the largest 

votes from all binary classifiers. 

B. HRBD and HRBT Image Feature sets 

HRBD [8] and HRBT features are extracted following the 

same strategy. Their difference stands in the image 

"transformed" coefficients considered: the DCT coefficients for 

HRBD and, the Tchebichef moments for HRBT. These features 

aim at carrying out the variations of the histograms of groups of 

such DCT coefficient or moments. Notice that some of these 

features have been previously experimented in the spatial [21] 

and wavelet [22][23] domains. 

The first group of features we use, has been proposed by Shi 

et al. [23]. They correspond to the statistical moments of the 

Discrete Fourier Transform of one Histogram (DFTH):  

   (∑   |    |
   
   ) (∑ |    |

   
   )⁄              (1) 

where      |    | denote the DFTH at the frequency   and 

its magnitude respectively, and K corresponds to the frequency 

dynamic. The second group of features we also consider, has 

been suggested by Wang et al. [24]. They improve steganalysis 

performances by working on filtered version of the DFTH. 

They suggest three distinct features          
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In order to be more image content independent, Shi et al. [15] 

proposed to extract these features from the image and also from 

its prediction error image, which is the difference between the 

image and its predicted version. The prediction algorithm, we 

exploit in the sequel, is expressed as [25]:  

     ̂  {
                   

                   
              

                (5) 

where e is the prediction error of the pixel x;  ̂ is the predicted 

value of  ;  , a, b and c are the 4 pixels in a 2×2 pixel block.  

From that standpoint, Liu et al. [16] suggest to extract these 

DFTH statistics from re-organized block based DCT 

coefficients; providing a set of features we named HRBD.  

Herein, in the framework of image authentication, we 

propose to substitute DCT coefficients by the Tchebichef 

moments of the image. These moments are the simplest discrete 

orthogonal moments, widely used in digital image processing 

such as image reconstruction and pattern recognition. The 

        order Discrete Tchebichef moment     is defined 

by [26]: 

                 ⁄  ∑ ∑                    
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where       and       are the Tchebichef orthogonal 

polynomials and        weighted values: 
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Notice that, it is possible to derive the DCT basis from the 

discrete Tchebichef moments [27] and that some experimental 

results given in [28] illustrate close performances between  

DCT coefficients and Tchebichef moments for lossy image 

compression and image reconstruction. However, in some 

cases, Tchebichef moments have shown better behavior 

especially for images with sharp boundaries and regular 
texture [20]. This motivates and makes us expect achieving 

better performances with the two sets of features.  

The procedure for extracting HRBT features is the same than 

for HRBD features presented in [16]. In a first time, the image 

is divided into non-overlapping blocks of u×u pixels - in the 

sequel u=8 - and for each, Tchebichef moments up to the  

                order are computed leading to u×u 

moments values:                        . Then, 

each block of u×u moments is partitioned into an L-scale 

wavelet-like tree of         subbands, where     . At last, 

moments belonging to the same sub-band in each block are 

clustered so as to form an L-scale coefficients tree for the whole 

image. DFTH statistics are then extracted from each of these 

"subbands" {           }.  
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III. EXPERIMENTAL RESULTS 

A. Image test sets and modifications 

Four test sets of images issued from different medical image 

modalities (see Fig. 1) were considered: 

- Magnetic resonance images (MRI) of the head: 120 images 

of 12 bit depth and of 256 × 256 pixels from 3 patients; 

- 200 abdomen CT images from 4 patients with 512 × 512 

pixels coded on 12 bits; 

- X-Ray Imaging: 162 mammograms of 4740×3540 pixels 

coded on 12 bits from multiple patients;  

- Ultrasound imaging (Echo): 52 images of 576 × 690 pixels 

and 8-bit depth of thrombosis from 3 patients. 

The modifications we have considered in these experiments 

are: contrast and brightness adjustment, Gaussian filtering, 

scaling, Laplacian filtering, JPEG and JPEG2000 lossy 

compression and histogram equalization. Table I gives the 

parameters used for each of these modifications.  

 
(a)                   (b)                      (c)                   (d) 

Fig. 1. Image samples from our test sets: (a) MRI (b) CT image (c) X-Ray 
image d) Echography.  

 
For each modality, the different image test sets were divided 

into two groups for training and testing our classifiers (see 

section II-A). By next, we give the average results achieved 

with classifiers that have been trained several times (at least 10 

times) with different fold-cross validation (i.e. training and 

testing sets are randomly selected at each trial). SVM 

Classifiers were used so as to only evaluate performance of 

HRBD and HRBT features or of their combination. Notice that 

features are extracted from one single 128×128 pixel block 

centered in each image, while considering 13 "subbands" or 

group of coefficients. Thus, in the following, an image is 

summed up by an HRBT feature vector (resp. an HRBD feature 

vector) of 156 components or by a vector of 312 components if 

HRBT and HRBD features are used jointly. Notice also that the 

parameters of the SVM were selected from their Receiver 

Operating Characteristics (ROC) curves.  

B. Performances Evaluation 

As mentioned above, one first objective is to discriminate 

original images from modified ones. Once an image is declared 

unauthentic, a multi-class classifier is exploited to distinguish 

the nature of the modification. Due to paper length limitation, 

only the detection rate is used as performance indicator; rates 

that are listed in Table II and Table III for HRBD and HRBT 

features and for their combination.  

 
From Table II, it can be viewed that both HRBD and HRBT 

features can be used for image modification detection. They 

have similar performances with detection rates about 80% 

whatever the image modality. From our experiments, HRBT 

features perform better than HRBD features for X-ray images 

(mammography and CT images). According to our previous 

comments (see section II), one reason may stands in the fact 

that X-Ray images have sharp boundaries. Notice also that the 

false positive and negative detection rates achieved by our 

binary classifiers are similar and lower than 20%, which is a 

good tradeoff. The combination of HRBD and HRBT into a 

single feature set gives better performance. This is in agreement 

with a result shown by Bayram et al. [15]: detection 

performance with several sets of image features are better or at 

least equal to those obtained considering these feature sets 

independently. However, the gain is rather small and can be 

explained by the close mathematical relationship of HRBT and 

HRBD features.  

In Table III, we give the correct identification rates of the 

modification considering images declared unauthentic at the 

previous stage. In general, it can be seen that the modification 

can be identified with a rate higher than 70% for HRBT and 

HRBD or than 77% if these features are considered jointly, 

except for contrast and brightness adjustment. One reason may 

stand in the fact that these two modifications confuse our 

multiclass-classifier. If one of these modifications is omitted in 

the experiment, the detection rate is higher (greater than 78%). 

Table III also points out that HRBD features perform better 

than the HRBT for MRI and Mammography images but not for 

CT and echography images. This underline that HRBT and 

HRBD features put in evidence different pieces of image 

information that are more or less sensitive to image 

modifications. It appears that HRBD and HRBT are 

complementary features. As example, HRBD perform better 

for identifying JPEG images but not for CT images where 

HRBT features provide better results. This is also supported by 

the better detection rates we obtain when HRBD and HRBT are 

exploited simultaneously.   

From the above experiments, where image features are 

extracted from a single block of 128x128 pixels centered into 

the image, one can expect detecting image processing applied 

locally. However, detection rates will decrease with the size of 

the block on which the analysis is conducted. For instance, in 

the case classifiers are trained based on features extracted from 

one 32x32 pixel block (instead of 128x128), the detection rates 

TABLE I IMAGE MANIPULATION AND THEIR PARAMETERS 

Modification Values of parameters 

Scaling up(s %) 1 5 10 25 50 

Laplacian filter(α) 0.1 0.3 0.5 0.7 0.9 

Deviation of Gaussian filter () 0.3 0.5 1.0 2.0 3.0 

Contrast enhancement rate (c %) 1 5 8 10  

Brighten rate (b %) 2 5 8 10  

Quality factor(Q) 95 85 80 75 60 

Compression rate JP2K (j) 2:1 5:1 10:1 20:1 50:1 

Histogram equalization  

 

Table II DETECTION RATES - MODIFIED vs. NON-MODIFIED IMAGES 

Detection rate 

(%) 
MRI Mammography CT Echography 

HRBT 78.51 84.84 83.21 81.65 

HRBD 78.26 84.49 82.47 84.67 

HRBT&HRBD 79.13 85.67 85.06 85. 87 
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for discriminating original images (or original pixel blocks) 

from modified ones, fall in the range 74%-81% whatever the 

image modality. These rates are about 5% less than with a block 

of 128x128 pixels (see table II).  

Actually, our system keeps limited to the detection or 

identification of “a priori known” modifications. In the case of 

an “unforeseen attack”, this one will be identified as the 

modification that leaves the most similar footprint into the 

image. Nevertheless, our solution can be easily updated. It does 

not require to recompute and store a new image signature.  

 

IV. CONCLUSION 

In this paper, we have shown that blind forensics approaches 

initially proposed for general public images, can also be used in 

medical imaging. Without taking care of the signal 

specificities, good detection rates are already achieved. We also 

shown that HRBD features, originally proposed for natural 

image steganalysis, complemented with new HRBT features 

can serve blind detection of global image modification and, 

furthermore, for determining the nature of the modification one 

image may have undergone. Depending on the image modality 

and as well as on the type of the modification, HRBT and 

HRBD features are complementary. At least, this experiment 

points out that image moment theory can be exploited for 

verifying blindly the integrity of medical images. Future works 

will focus on identifying more appropriate image moments as 

well as on the detection of local image modification.  
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Table III MULTI-CLASS CLASSIFIER DETECTION RATES BASED ON  

HRBT/HRBD/HRBT&HRBD FEATURES  

Detection 

rate (%) 

MRI 
HRBT/ HRBD/ 

HRBT& HRBD  

Mammo. 
HRBT/ HRBD/ 

HRBT& HRBD 

CT 
HRBT/ HRBD/ 

HRBT& HRBD 

Echography 
HRBT/ HRBD/ 

HRBT& HRBD 

JPEG2K 78.53/83.56/ 

84.99 

71.38/82.59/ 

85.56 

86.38/90.94/ 

92.93 

93.75/85.05/ 

96.92 

JPEG 79.47/99.01/ 

98.37 

83.84/89.75/ 

98.02 

89.17/63.37/ 

93.60 

98.56/98.08/ 

99.78 

Gaussian 

filtering 

75.17/77.00/ 

77.62 

81.60/86.79/ 

89.14 

78.04/69.40/ 

79.30 

86.15/76.72/ 

87.85 

Laplacian 

filtering 

100/100/ 

100 

100/100/ 

100 

100/100/ 

100 

100/100/ 

100 

Scaling 72.31/79.23/ 

80.69 

81.00/86.17/ 

89.75 

81.39/75.52/ 

83.60 

86.73/86.57/ 

91.92 

Brighten 68.56/73.54/ 

74.14 

65.87/70.27/ 

73.12 

73.52/57.15/ 

76.50 

75.73/72.93/ 

77.52 

Contrast 59.85/82.08/ 

83.23 

59.56/62.52/ 

66.64 

73.14/78.15/ 

79.38 

63.78/67.71/ 

69.23 

Histeq. 100/100/ 

100 

100/100/ 

100 

100/100/ 

100 

100/100/ 

100 
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