
IEEE TRANSACTIONS ON INFORMATION TECHNOLOGY IN BIOMEDICINE 
 

 

1 

 

Abstract—In this paper, we present a medical image integrity 

verification system to detect and approximate local malevolent 

image alterations (e.g. removal or addition of lesions) as well as 

identifying the nature of a global processing an image may have 

undergone (e.g. lossy compression, filtering …). The proposed 

integrity analysis process is based on non significant region 

watermarking with signatures extracted from different pixel 

blocks of interest and which are compared with the recomputed 

ones at the verification stage. A set of three signatures is proposed. 

The two firsts devoted to detection and modification location are 

cryptographic hashes and checksums, while the last one is issued 

from the image moment theory. In this paper, we first show how 

geometric moments can be used to approximate any local 

modification by its nearest generalized 2D Gaussian. We then 

demonstrate how ratios between original and recomputed 

geometric moments can be used as image features in a classifier 

based strategy in order to determine the nature of a global image 

processing. Experimental results considering both local and 

global modifications in MRI and retina images illustrate the 

overall performances of our approach. With a pixel block 

signature of about 200 bit long, it is possible to detect, to roughly 

localize and to get an idea about the image tamper.  

 
Index Terms — medical imaging, integrity control, 

watermarking, image moment, cryptographic hash.  

 

I. INTRODUCTION 

DVANCES in information and communication technologies 

provide new means to access, share, replicate and 

manipulate medical images. But if the daily medical practice 

takes advantage of such an evolution, this facility to handle 

images also compromises their security. As any pieces of 

medical information seen and analyzed, medical images have to 

be reliable or trustworthy, a statement which relies on the 

outcomes of the image [1][2]: “integrity” that ensures it has not 

been modified by a non-authorized person; and “authenticity” 

which asserts its origin and its attachment to one patient. In this 

work, we focus on verifying the integrity of an image.  
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While it is vital to keep images safe from any damage, it is as 

much important being able to detect when an image has been 

modified and in which manner. Indeed, medical images can be 

modified accidentally, for example during their transmission, 

or deliberately. In this latter case, images can be tampered with 

the introduction or the removal of lesions [3]. Also, it must be 

known that some image processing may lead to similar 

situations. In telemedicine applications, for instance, lossy 

image compression is tolerated so as to reduce the amount of 

information to be transmitted. However, depending on its 

extent, this process may induce inacceptable information loss 

and results in a misdiagnosis [4][5], involving at the same time 

liabilities of physicians.  

In a previous work, Coatrieux et al.[6] stated that verifying 

the integrity of a medical image is an analysis process that 

needs to answer three main questions: is the image identical to 

its original version? If not, which parts of the image can still be 

used trustfully for diagnosis? And, finally, from a legal point of 

view, what is the purpose or the objective, if any, of the image 

tamper? In order to answer these questions, one can associate 

three distinct levels of integrity: 

-- Level 1 (L1): Modification Detection -- an alarm should be 

given under any kind of image modification; 

-- Level 2 (L2): Modification Location -- untrustworthy parts 

of the image have to be indicated; either in a rough way, so as to 

designate areas still interpretable by the physician; 

-- Level 3 (L3): Forensics analysis -- the nature of the 

modification over the whole image or within untrustworthy 

regions has to be identified (accidental, authorized/non 

authorized).  

In the literature, different strategies have been proposed for 

verifying image integrity. They include the use of image 

digests/signatures/hashes [7][8], watermarking [9] and blind 

forensics methods [10]. The first kind of methods verifies 

image integrity based on the comparison of hashes computed 

over the image under investigation or some parts of it with the 

hashes shared with the image. Such a hash can be computed in 

different ways. Cryptographic hash functions [7][8] allow 

verifying the exact identity of the image under investigation 

with the original image, and can be used to achieve L1. They 

provide the best performance in terms of detection and are 

extremely difficult to counterfeit. To localize alterations (L2), 

one can compute hashes on independent image areas [11][12]. 

In order to reduce the image signature length, checksums, 

which are based on error detection codes, can be used instead of 
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cryptographic hashes [13]. However, checksums are less 

efficient in terms of detection. Perceptual hashes are another 

kind of image digests [7]. They aim at detecting malevolent 

image content changes but are robust to global image 

processing such as JPEG and filtering processes. These 

approaches can be used to partly achieve L1 and L3. Indeed, 

they only state if yes or not the image is still valuable while 

considering some specific modifications.  

Watermarking is an effective tool for verifying image 

integrity and authenticity. One common approach consists to 

insert a specific watermark [14–16]. The non-detection of this 

latter informs about image integrity loss. In some cases 

watermarking is combined with image signatures [17][18]. For 

example, in [13][19–20] a set of signatures is computed from 

one Region Of Interest (ROI) and then watermarked within 

Regions Of Non-Interest (RONI). Other watermarking 

schemes, referred as self-recovery image watermarking, 

propose to partly restore tampered parts of the image [21-25]. 

However, these ones only roughly recover the image, i.e. not 

the image details. Nevertheless, by subtracting the restored 

image to the observed one, it becomes possible to achieve L3. 

Even though such a solution has some interests for general 

public multimedia applications, in healthcare it is crucial to 

retrieve exactly the original signal, otherwise, there still exists a 

risk that some important information is missing. Furthermore, 

these methods require high embedding capacity (capacity - 

amount of information a method can embed) and, sometimes, 

may not be able to protect images of small dimensions (e.g. the 

method reported in [25] fails to achieve its objectives for 

images smaller than 512512). To gain in performance they 

sometimes spread the watermark over the whole image with the 

risk to biased the image interpretation. Recently, Tagliasacchi 

et al. [26] proposed an image hashing algorithm based on the 

principles of compressive sensing while making the assumption 

that tampering is sparse in some orthonormal bases. To 

compute their hash, the image is first partitioned into n blocks 

of size N×N, from which the average gray value of each block is 

computed. Then, they quantize a limited number of random 

projections of this averaged image before Wyner-Ziv coding it 

to reduce the bit-length. As with the previous approaches, it is 

possible to get an idea of the modification, but it requires 

computing iteratively the sparse estimate of the tampering. 

Even though this hash is rather small (about 100 bytes for a 

512×512 image), it is robust to moderate content-preserving 

transformations (e.g. scaling, rotation ...). More clearly, their 

hash will remain the same after these transformations. It will 

also fail to detect non-sparse modification like JPEG 

compression. As consequence, it only partly fulfills L3.  

The third strategy refers to blind forensic techniques which 

do not require any image prior [10]. These techniques aim at 

identifying the footprint or evidences left by most image 

modifications. A large group of “blind forensic” methods rely 

on classifier based mechanisms which use as input some image 

features [10][27-30] that reveal the statistical nature of image 

modifications. Most of these solutions allow discriminating 

non-modified images from images that have been processed 

(filtered, rotated, compressed and so on [27-29]).  

The system we propose is based on the watermarking of a 

ROI signature (computed on independent pixel blocks) into 

RONI of the image. As it will be shown, the embedded 

signature allows us achieving L1 to L3 under the constraint of 

low watermarking capacity performance. Beyond our system 

objectives, the main contribution of this work stands in a 

L3-signature derived from the geometric moments of pixel 

blocks used in order: i) to have an idea about the shape of one 

local modification, by approximating it with its nearest 2D 

Gaussian function; and, ii) to serve as image feature within a 

classifier based mechanism which purpose is to discriminate or 

identify the nature of the global process an image may have 

undergone. Our solution differs from the one of Tagliasacchi et 

al. and from other self-recovery approaches, because it focuses 

on approximating the modification rather than reconstructing it, 

with the objective to discriminate any image modification 

under the heavy constraint of a small signature length.  

In the next Section, we describe the architecture of our 

system as well as our set of signatures. Two of them, devoted to 

L1 and L2, are also presented. Section III exposes our 

L3-signature, the way it is computed and used. Then, we report 

and discuss in Section IV experimental results for both local 

and global image modifications, before concluding in Section 

V. 

II. PROPOSED INTEGRITY CONTROL SYSTEM AND 

L1/L2-SIGNATURES 

A. System Architecture 

The basic structure of our system is depicted in Fig. 1. At the 

protection stage, a signature is extracted from the ROIs of the 

image or from pixel blocks, and is embedded into the rest of the 

image (i.e. RONIs). At the verification stage, differences 

between recomputed and extracted signatures are analyzed in 

order to achieve the three integrity verification levels: L1, L2 

and L3. In the following, we propose one specific and 

independent signature for each integrity level (see Fig. 1). More 

clearly, Li is based on one signature Hi, meaning that the ROI 

signature H will result in the concatenation of the signatures Hi, 

i=1..3: H=[H1,H2,H3]. Hi is obtained from the ROI by means of 

an extraction function. We expose in the next sections the 

extraction functions we retained and developed and also how 

we conduct L3 based on L2.  
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It is important to notice that the performance of our system 

partly depends on the one of the RONI watermarking algorithm 

used. These methods, as any watermarking schemes, establish a 

different compromise between three main properties: 

imperceptibility, capacity and robustness (i.e. ability of the 

watermark to survive image alterations). The more robust to 

image distortion the algorithm, the more the image is distorted 

and the capacity is reduced (i.e. the size of H in our case). RONI 

watermarking performance relies also on the RONI 

dimensions. Obviously, it increases along with the dimensions 

of the RONI and of the image, and may become critical for 

images of small dimensions. This is the reason why we focus on 

providing a signature H of dimension |H|, expressed in bits, as 

small as possible. At the same time, the needs of robustness of 

our signature Hi, i=1..3, are different. Indeed, based on the fact 

the purpose of H1 is just to inform us the image has been 

modified; it can be embedded in a fragile way. Any 

modification of the image will result in a L1-signature different 

from the original one (i.e. H1). In case only RONIs are modified, 

we will know it through H2 that will indicate all ROIs are 

authentic. Such an analysis is however possible if H2 is 

extracted error free, meaning robustly embedded. That is also 

the case for H3. If H2 and H3 are extracted with errors the 

integrity analysis we propose will be biased.  

Several RONI watermarking methods from the literature 

[6][17][25][31-33] can be used in our system. Among them 

some have been designed for multiple message embedding 

[31][25]. In [31], Giakoumaki et al. conducted message 

embedding by means of quantization index modulation applied 

to RONI wavelet coefficients and make use of BCH error 

correction codes so as to gain in robustness. In case one 

message does not need to be robust (e.g. H1), it is embedded 

within the first wavelet decomposition levels. On the contrary, 

when high robustness is required, wavelet subbands of low and 

mid-frequencies are exploited. In their experiments conducted 

on 8 bit depth encoded echographic images of 256320 pixels, 

they embed three messages: one signature (320 bits), one index 

(364 bits) and some caption text (1456 bits) that survive a lossy 

JPEG compression of quality factor 85, 90 and 95, respectively. 

By adapting their scheme to our Li-signatures, we assume it is 

possible to achieve a capacity of 700-800 bits with robustness 

to a JPEG compression of quality factor 85. OM. Al-Qershi et 

al. [25] provide a similar approach using RS code instead of 

BCH codes. They achieve high capacity and robustness to salt 

and pepper noise addition. Notice that for both methods, the 

RONI comprises some part of the anatomical object observed 

into the image. This limits the watermark robustness, as it is 

mandatory not introducing signal anomalies that could err 

practitioners. This invisibility requirement becomes less strict 

if the image black background outside the anatomical object is 

considered (see examples in Fig.4(b) and Fig.5). As example, 

by simply modulating the relationship between the value of a 

pixel and the mean of the pixel block it belongs to, [33] we were 

able to embed 600 bits within the black background of 256x256 

12 bit encoded MRIs of the head while being robust to JPEG 

compression of quality not smaller than 70. On the same kind of 

images, in [6], by modulating Discrete Cosine Transform 

Coefficients of pixel blocks we achieved a black background 

watermark robust at least to a JPEG compression of quality 

factor 50 or 85, with a capacity of 900 to 1500 bits, respectively. 

In fact, based on a short experiment about the watermark 

invisibility we conducted with four radiologists of the CHRU of 

Rennes [34], we increase the watermark energy while 

maintaining it smaller than a “hindering-threshold”; threshold 

under which the watermark is visible for the specialist but does 

not bother her or him during her or his interpretation of the 

image. Notice that watermark imperceptibility still needs to be 

further explored in medical imaging, even for RONI 

watermarking.  

As described, RONI watermarking performance varies from 

one scheme to another and increases with the image 

dimensions. Thus, while considering the ROI constituted of k 

blocks of NN pixels (e.g. N=64, N=128), we propose in the 

sequel to ensure L2 and L3 with a signature of about 200k bit 

long for a 12 bit depth encoded image. This will allow us 

protecting one ROI representing 50% of a 256256 MRI with 

less than 1000 bits using 64x64 pixel blocks (see Section IV.C).   

B. Detecting (L1) and Localizing (L2) Image Modifications 

As stated above, to achieve L1, any modification of the 

image should cause an alarm. For that purpose, we propose 

cryptographic hash functions as extraction function. Beyond 

the fact they provide the best detection performance, they have 

specific properties like the dispersion property which ensures 

that two slightly different ROIs will have very different 

signatures [7]. Thus considering one ROI as a binary message 

M, the cryptographic hash function (f1) will provide a binary 

string of n=|H1| bit long signature   :         . We 

decided to use the SHA-1(Secure Hash Algorithm) that yields 

to a 160 bit signature. Its probability of collision, that is the 

probability that two ROIs have the same signature, is upper 

 
Fig. 1. Principle of our integrity control system. A secret watermarking key is used to guarantee that only the entitled users can verify the image integrity.  
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bounded by 1/2
160 

[7].   

In order to identify which parts of the image can still be 

interpreted without risks of misdiagnosis (L2), one solution 

consists to compute a set of signatures from different parts of 

the ROI. It is then possible to define a map of k pixel blocks Bi, 

i=1…k - see the block mapping function in Fig. 1 -  where each 

block will be independently protected by one signature (i.e. 

  
 ,i= 1..k). Integrity is consequently controlled at the block 

level. At the verification stage, one block Bi is said to be 

tampered if its recomputed signature   
   differs from   

 . By 

concatenating this set of signatures, we obtain the signature H2: 

H2 = f2([B1, …, Bk])=[   
 , …,   

 ]. In our system, the 

redundancy provided by error detection codes has been 

considered for the computation of signatures   
 ,i=1..k [13]. 

Considering Hamming error detection codes, here used, a 

message (equivalently a pixel block) of 2
r
-r-1 bit long will be 

assigned a redundancy or checksum of r bits with an error rate 

upper bounded by 1/2
r 
[35][13].  

Thus, based on H1 and H2, it is possible to know if the image 

has been altered (L1) and which pixel blocks   ,i=1..k, cannot 

be used trustingly (L2). As we will see in the next section, our 

L3-analysis process depends in parts on the output of L1 and 

L2.  

III. L3-SIGNATURE: DESIGN AND USE  

As stated previously, L3 corresponds to a digital forensics 

analysis which purpose is to identify the nature of the 

modification over the whole image or within untrustworthy 

pixel blocks. Our L3-signature (H3) has been designed in order 

to treat these two situations as two distinct cases. More clearly, 

differences between H3 and its recomputed version are 

analyzed or interpreted differently depending if the 

modification is identified as global or local. The choice 

between both cases is made upon the output of L2 (see Fig. 1). 

If this latter shows that only some pixels blocks are 

non-authentic, we assume the modification is local, otherwise 

we consider the image undergone a global image processing. In 

the former case, we aim at getting some insights regarding the 

modification while in the latter we want to identify the nature of 

the modification. In the following we first introduce our L3 

signature in the case of local modification, and then present 

how it can be used in a classification based strategy for 

identifying the nature of global modifications. Notice that as for 

L2, we consider the ROI constituted of k blocks Bi, i=1…k, from 

each is computed one L3-signature   
  (see Fig. 1) As a 

consequence, H3 results from the concatenation of these 

signatures (H3 = [  
 , …,   

 ]) and the L3 analysis process is 

conducted independently on each block.  

A. Approximation of Local Modification  

Herein, our objective is to know more about one local 

modification within one pixel block Bi claimed as 

non-authentic at the output of L2. The modification  we refer 

to corresponds to the signal of difference between the original 

block    and its modified version    :      
 
   . We aim at 

refining more precisely its position within    (see section II-A) 

and its dimensions, i.e. its amplitude and size. For that purpose, 

we suggest to approximate it by means of a modification model: 

its nearest  generalized 2D Gaussian (see Fig. 2) defined as: 

      

                 
  

         

   
  

         

   
  

                   (1) 

where                   and                 , 

in the reference coordinates built on the two axis of the 

Gaussian. Notice that in order to simplify a little this 

modification model, we make the following hypothesis 

introduced by [37]: most energy and amplitude of the 2D 

Gaussian function is concentrated in the range of ±2σ. As a 

consequence, we consider that the basis ellipse of the Gaussian 

function in Fig. 2 is constrained with the relation:       

and      . 

The purpose of the L3 analysis process based on the 

difference between   
  and   

  , computed from    and     
respectively, is thus to help us to determine the parameters of 

this modification model so as to make it the nearest as possible 

of the real local tamper  . The parameters we look at are (see 

Fig. 2): its center of mass, identified by its row and column 

positions         ; the direction of the major axis ( ); the 

deviations (   and   ) along the major axis and minor axis and 

the amplitude ( ).  

 

To conduct this task, we decided to estimate each parameter 

independently. One consequence of such a choice is that our 

L3-signature   
  results from the concatenation of six digests 

  
   u=1..6, each derived from    by means of a digest function 

   built considering the following properties: 

C1: gu should be easy to compute;  

C2: gu should be a linear function, so the digest associated 

to the modification   can be achieved easily: 

                    . 
C3: gu should be proportional to the parameters to be 

estimated. This will allow us assuming that if 

        (      

       )   then         

         .  

The digest functions we propose are based on image 

geometric moments [32]. Beyond the fact that they are easy to 

compute (C1) and that they are linear (C2) – providing easy 

access to the moments of the modification  – they also give us 

some geometric information about the image shape, thus about 

the shape of .  

 

The geometric moments of an image intensity function f(r, c) 

are defined by [37] : 

    ∑ ∑            
   

              (2) 

Among existing moments, geometric moments are the simplest 

ones, and lower order moments can be taken as global shape 

major axis

(r0, c0)

A

m
in

o
r
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is

a

b

N

θ r

  
Fig. 2. Gaussian function model in an N×N pixel block  
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descriptors. In particular, it is possible to estimate the 

parameters of a generalized 2D Gaussian function 

      

        defined on a pixel block from its geometric moments:   

 The Gaussian center of mass (r0,c0) can be derived 

from the two first order moments        ): 

         ⁄ ,               (3) 

         ⁄ ;  

where    , the zero order moment, represents the sum of gray 

value of the image. 

 The parameters of the ellipse at the basis of the 

generalized 2D Gaussian function can be estimated by referring 

to the image ellipse concept defined by Prokop et al.[38] . They 

suggested that any image object can be described with an 

ellipse of same first two order moments value and axes 

directions with the image object. This image ellipse can be 

determined using the second order central geometric 

moments             ), defined as: 

       ∑ ∑       
       

        
   

           (4) 

Notice that     can be derived from the corresponding 

geometric moment    [30]:  

       ;              

          ;  
             ;                                   (5) 

             .;  

             .;  

The direction of the major axis (), as well as the axis lengths of 

the Gaussian basis (a) and (b) can be estimated by [39]: 

  {
 [        √         

      
     ]

   
}

 
 ⁄

               (6) 

  {
 [        √         

      
     ]

   
}

 
 ⁄

               (7) 

  
 

 
     (

    

       
)                             (8) 

 Once the position and the basis ellipse of the 

Gaussian are estimated, we still need to estimate its amplitude 

(A). Considering that the gray volume of the Gaussian function 

(M00) should be equal to the one of the real modification and the 

relations between     and   ,   , the amplitude (A) of the 

Gaussian function can be derived from the following relation: 

        ∑ ∑  
  

         

   
  

         

   
   

    
 
     

 

 
      (9) 

or equivalently:  

  
       

   
             (10) 

 

Based on the above relations and on the fact geometric 

moments are linear (see eq.(2)), we can estimate the parameters 

of the nearest generalized 2D Gaussian function of a local 

modification in one pixel block   . We simply assume the 

modification model is of same geometric moments that the real 

modification  . As a consequence our digest functions gu, 

u=1..6, correspond to the first geometric moments of order up 

to two of   .  

 

To sum up, for one pixel block   , L3 protection and 

verification processes are achieved in the following way:  

1) Integrity protection stage  

a- Compute   
 =[g1(   ),g2(   ),g3(   ),g4(   ), 

g5(  ),g6(  )]=[    
      

      
      

      
      

  ].  

b- Embed   
  along with other signatures in the 

RONI.  

2) Integrity verification stage (   is detected modified based 

on   
 ) 

a. Compute the L3-signature of the observed block 

   :   
  =[   

       
       

       
        

        
   ]. 

b. Compute the geometric moments of the 

modification   (         ):   
 =   

   -   
  

=[   
     

     
     

     
     

 ] and compute the 

associated central moments     
     

     
  (see 

Eq.(5)) 

c. Compute the parameters of the nearest generalized 

2D Gaussian function based on Eqs.(3)(6)(7)(8) 

and (10).  

 

From this procedure, six digests 

(   
      

      
      

      
      

  ) are required per image block 

As a result, the length of the L3-signature, H3 depends on the 

number of protected blocks and the image depth. Indeed, for a 

ROI divided in blocks of 64×64 pixels, for each block, we will 

need to store 164 bits or 188 bits for an 8 bit encoded image or 

12 bit encoded image respectively. If the available embedding 

capacity allows it, we can embed digests of blocks of smaller 

dimensions or overlapped. In both cases accuracy of local 

modification approximation will be better. It must be noticed 

that the geometric moments of one block can be expressed as a 

linear combination of those of its sub-blocks [39]. Furthermore, 

like Tagliasacchi et al. [26], it is possible to compress H3 

losslessly and consequently reduce the capacity requirements 

while improving L3 performance.  

As defined and as we will see in Section IV, in the case the 

modification is constituted of several pieces into a block, our 

solution gives an average approximation. Furthermore, this 

approach remains limited to local modifications. In fact, it 

suffers from the uni-polarity and linearity assumptions we 

made about our modification model (see constraint C2). In case 

the modification  is constituted of different pieces of 

amplitude positive and negative at the same time, like when the 

image undergone some filtering or lossy compression, our 

system will fail to give a good response. Indeed, based on the 

fact such a process does not impact much    
  , we will badly 

estimate the modification position (see Eq.(3)), amplitude 

(Eq.(10)) and extension (see Eqs.(6)(7)(8)).  

B. Global Image Modification Identification 

One image is considered as globally modified in our system, 

if at the output of L2 all independently protected blocks Bi, 

i=1..k, are declared unauthentic. Our objective is thus to 

identify the nature of the modification (e.g. filtering, lossy 

compression, contrast adjustment and so on). As mentioned in 

introduction, this task can be conducted blindly by means of 

classifier based mechanisms using as inputs some image 

features that reveal the statistical nature of image modifications 

[10] [29]. The reader may refer to [29] for a wide range of 

image feature sets. The efficiency of such a solution depends 
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on: (i) the image feature sensitivity to image modifications and 

also (ii) their independency to the image content (most image 

processing impact the image and are partly independent of the 

image content [10]).  

In our system, we follow a similar strategy with the next 

advantages: 1) based on L2 and L1 we know a pixel block is 

modified while in blind forensics it is first necessary to 

discriminate original images from modified ones; 2) we can 

have access to original image feature values by means of 

watermarking allowing us removing the effect of the image 

content. Instead of including new image features into H3 (or 

equivalently   
 ), we suggest to use pixel block geometric 

moments (i.e.   
   as input of a classifier based strategy. As it 

can be seen in Fig. 3(a), in the case of retina images (see Fig. 

4(a)), it appears that the variations of the ratios      between 

the geometric moments of one original pixel block and those of 

its modified version (i.e.    
   and    

    respectively - 

        
      

  ⁄  ) discriminate fairly well different image 

processing. This can be better viewed in Fig.3(b) which shows 

the scatter diagram of three moment ratios 

--              -- for different modifications. Hence, we 

propose to train a classifier with the moment ratios as image 

features so as to discriminate global image modifications of the 

image. In our system, this classifier is the core of our L3 

analysis process, for global image modification identification.  

 

The determination of the nature of the modification an image 

may have undergone is a multi-class decision problem (where 

one class corresponds to one specific type of modification). For 

that purpose, we built a multi-class classifier based on 

One-Versus-One (OVO) binary classifiers, each of which 

discriminates images modified accordingly to two kinds of 

possible modifications (e.g. JPEG vs. Filtering, JPEG vs. 

Contrast adjustment,and so on). Thus, for a given 

multi-classification problem of   classes,          One 

Versus One (OVO) binary classifiers have to be trained, each 

for every distinct pair of classes. Then, by analyzing the 

responses of these classifiers, a multi-class conclusion is drawn. 

Among the different strategies for combining decisions of 

binary classifiers, the Max-Wins Voting (MWV) is one of the 

most commonly used approaches [40]. MWV assigns an 

instance to a class which has the largest votes from all binary 

classifiers.  

In this work, we use Support Vector Machines (SVM) [41]. 

This choice stands on the fact SVM provides superior 

classification performance in many applications [42–44]. One 

SVM has thus been trained to differentiate pairs of 

modifications (e.g. JPEG vs. Filtering, Rotation vs. Scaling …).  

It is important to notice that the performance of such an 

approach depends on the number of geometric moment ratios 

used per block as well as on the number of protected blocks. 

Indeed, one signature   
  gives us access to the geometric 

moments of order up to two or equivalently to six moment 

ratios per N×N pixel block, all of which can be used to train a 

classifier. Performance depends also on the nature of the 

modification and of the sensitivity of geometric moment ratios 

to these modifications. We come back on these aspects in the 

next section. 

IV. EXPERIMENTAL RESULTS 

In these experiments, we assume that L1 and L2 procedures 

have been already performed. We only focus on L3. We recall 

that our system decides if the modification is global or local 

based on the output of L2 (see Fig. 1). If all blocks are declared 

unauthentic, then it tries to identify the nature of the global 

tampering; otherwise, it looks for approximating local 

modifications in blocks indicated as tampered.  

Different image modalities have been considered (see 

samples in Fig. 5):  

- Magnetic resonance (MRI) of the head: 120 images of 

256 × 256 pixels and 12 bits depth from 3 patients, 40 

images per patient; 

- X-Ray Imaging: 162 mammograms of 4740 × 3540 

pixels coded on 12 bits from multiple patients, 1 to 2 

images per patient, and 200 abdomen CT images of 512 

× 512 pixels coded on 12 bits from 4 patients, 50 images 

per patient. 

- Ultrasound imaging (Echo) of vein: 52 images of 576 × 

690 pixels and 8-bit depth from 3 patients, possessing 14, 

9 and 29 images respectively. 

These image data sets have been used in order to train and 

test our SVM classifiers for the identification of image 

processing (see section III.B). Nevertheless, for local 

modification, experiments have only been conducted on retina 

images of 8-bit depth (Fig.4(a)) and on 12-bit depth MRIs of 

the head of 256×256 pixels (Fig.4(b)). Notice also that 

whatever the imaging modality, the elementary block size is of 

64×64 or 128×128 pixels from which 6 geometrics moments 

 
(a)                                                 (b) 

Fig.3. Variations of ratios between geometric moments of the original image and 

its modified version in the case of retina images considering different 

modifications: (a) Ratios of moments of order up to 10th (55 values); (b) Scatter 
diagram of moments ratios (with the first 2nd order moments). 
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64×64 pixels and indicate positions of local modifications (b) MRI of the 

head JPEG compressed with Q=75, squared regions are blocks of 64×64 

pixels and indicate positions of local modifications.  
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are extracted and watermarked according to the above 

procedure. The global signature length is discussed in section 

IV.C.  

 

A. Experiments for Local Modification 

Herein, local modification approximation is conducted 

independently within 64×64 pixel blocks claimed as 

unauthentic (see Section III.A). Real and synthetic 

modifications were considered. They correspond to lesion 

removal or addition. Real modifications were achieved on 

retina images (see samples in Fig.4(a)). To conduct this task, 

we build up a system which combines an algorithm for the 

automatic detection of diabetes signs [45] with an in painting 

algorithm which automatically fills-in lesions to be masked 

[46]. Based on the automatic lesion detection we have also built 

a dictionary so as to insert lesions in image originally 

wholesome. Modified images and their “realistic” character 

were evaluated by a physician of our research team. Synthetic 

modifications allow us introducing some abnormal textures 

within MRIs. It is based on the generalized 2D Gaussian which 

amplitude is modulated by a noise uniformly distributed (see 

example in Fig.7). In MRIs of the head, depending on its 

location, such a distortion is interpreted as a hypersignal by a 

radiologist [6].  

In order to evaluate the approximation performance of our 

scheme, we use the Mean Square Error (MSE) so as to measure 

the distance between the real modification (        ) and 

its nearest 2D Generalized Gaussian        

       : 

MSE(,      

        =
 

  
∑ (             

            )
        

        (11) 

It gives an idea in average about the distance between the real 

modification with its approximation looking at them as 

intensity functions (i.e.        and       

            ). Our choice 

stands on the fact our modification model is naive compared to 

lesions’ complexity. In fact, we roughly approximate the 

modification. In case of a better modification model, other 

similarity measures like the one of Hausdorff [47] would be 

more appropriate. 

For the two modifications shown in Fig.6(a) and Fig.6(b), we 

got MSE values equal to 101.15 and 4.01 respectively. For the 

modification in Fig.7, the approximation of the noise 

modulated Gaussian function has a MSE of 1.46. As it can be 

seen, it is obvious that the more the real modification is similar 

to a generalized 2D Gaussian, the more the approximation is 

correct.  

B. Experiments for Global Modification 

The next experimental results only concern the four 

following medical image modalities: MRI, CT-images, 

TABLE I IMAGE MANIPULATION AND THEIR PARAMETERS 

Modification Values of parameters 

Scaling up(s %) 1 5 10 25 50 

Rotation angle(θ) 1 5 15 30 45 

Deviation of Gaussian filter () 0.3 0.5 1.0 2.0 3.0 

Contrast enhancement rate (c %) 1 5 8 10  

Brighten rate (b %) 2 5 8 10  

Quality factor(Q) 95 85 80 75 60 

Compression rate JP2K (j) 2:1 5:1 10:1 20:1 50:1 

Histogram equalization  

 

(a) (b) 

 (c)   (d) 
Fig. 5 Samples of our experimental image data sets: (a) MRI (b) CT 

image; (c) X-Ray image; (d) Echography. 

 

(a.1)           (b.1) 

(a.2)           (b.2) 

(a.3) (b.3) 

(a.4) (b.4) 

Fig. 6  Real image modifications of the retina image given in Fig. 4(a)  and 

their respective approximations:  (a.1)(b.1) (a.2)(b.2) 2D views of two distinct 

modifications and their approximations respectively; (a.3)(a.4)(b.3)(b.4) 3D 

views of same real modifications and their approximations respectively. 

      
(a)                                (b)                                 (c) 

Fig.7  Approximation of a noise modulated Gaussian function added to the 

MRI image in Fig.4(b).  a) 2D view of the zoomed 64×64 pixel block; b) and c) 

are 3D views of the real modification and of its approximation. 
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mammograms and ultrasound images. This is due to the fact our 

retina database test set is too small to train our classifiers. Our 

classifier (see Section III.B) was built independently on each 

modality with the aim to detect common medical image 

processing: contrast and brightness adjustment, Gaussian 

filtering, scaling, rotation, lossy JPEG and JPEG2000 

compression and histogram equalization. The parameter values 

we consider for each of these image manipulations are shown in 

Table I. We recall that this classifier is based on binary SVM 

classifiers that have been built so as to discriminate images 

modified by means of two distinct global image processes (see 

Section III-B). 

Binary SVM classifiers were trained using only the six 

geometric moment ratios of one single block of 64×64 or 

128×128 pixels centered in the image whatever the image 

modality (i.e. one signature   
  - see section III.A). Two size of 

block have been considered so as to show the sensitivity of 

geometric moment ratios to global image processing. The 

following results are given in average and achieved with 

classifiers that have been trained several times (at least 10 times) 

with different fold-cross validation (i.e. training and testing sets 

are randomly selected at each trial). Notice also that the 

parameters of the SVM were selected from their Receiver 

Operating Characteristics (ROC) curves. 

The performance indicators we use for our binary classifiers 

are: the detection rate (Pd), that is the ratio between the number 

of modified images correctly classified and the number of 

tested images; the false negative (Pfn) and false positive (Pfp) 

rates which measure the number of images claimed as tampered 

with modification of type 1 (e.g. JPEG) while being in reality 

modified with modification of type 2 (e.g. filtering) and vice 

versa.  

Table II gives the different rates (Pd, Pfn, Pfp) our binary 

SVM classifiers achieved with respect to different image 

modalities. As it can be seen, based on the six first order 

geometric moment ratios, they can distinguish different 

modification modes with high accuracy whatever the block size, 

size which however does not influence detection rates so much. 

The performance of the classifiers for JPEG2000 vs. JPEG and 

JPEG2000 vs. filtering are somehow lower than the others, 

especially for small modification extent (i.e. for small 

compression rates). The reason might lie in the fact that these 

modifications have a similar impact on image moments, thus 

confusing our classifiers. It is also possible to see that the false 

positive rate and false negative rate are similar and of small 

values. This indicates that the classifiers have a good tradeoff in 

identifying modified images (positive cases) and original 

images (negative cases). Notice also that working with images 

from different patients, demonstrate the independence of our 

feature to the image content. We also verified this by training 

classifiers with images from one patient; detection rates are 

very near to those of Table II. 

If, now, we focus on identifying the nature of the 

modification, analyzing the output of our binary SVM 

classifiers (see section III-B), Table III indicates that the type of 

the modification can be estimated with a detection rates greater 

than 90% in general. In the case of echographic images our 

detector confuses JPEG2000 with JPEG. Indeed, if JPEG is 

TABLE II DETECTION (Pd), FALSE POSITIVE (Pfp), FALSE NEGATIVE (Pfn) RATES OF OUR BINARY SVM CLASSIFIERS WITH INPUT SIX GEOMETRIC MOMENT RATIOS 

( M00,  M01,  M10,  M02,  M11,  M20) ISSUED FROM A BLOCK OF 128×128 OR 64×64 PIXELS. INDICATED FALSE POSITIVE AND NEGATIVE RATES ARE GIVEN FOR 

128×128 PIXEL BLOCK ONLY. 

Binary SVM 
Classifier 

(pair of 

modifications) 

MRI Mammography CT Echography 

64 

×64 
128×128 

64 

×64 
128×128 

64 

×64 
128×128 

64 

×64 
128×128 

Pd Pd Pfp Pfn Pd Pd Pfp Pfn Pd Pd Pfp Pfn Pd Pd Pfp Pfn 

jpeg2K vs. jpeg 90.50 91.32 16.25 1.11 85.31 86.79 23.95 2.47 84.95 88.36 23.28 0 83.46 84.23 26.15 5.38 

jpeg2K vs. filter. 95.58 90.00 7.92 12.08 90.99 93.87 2.96 9.24 88.50 91.34 8.96 8.36 87.31 87.69 6.46 16.15 

jpeg2K vs. rot. 95.83 94.66 10.69 0 95.20 96.34 1.96 5.36 99.50 99.94 0.12 0 92.58 94.35 2.26 9.03 

jpeg2K vs. scal. 94.75 99.10 0.14 0.14 99.38 99.63 0.62 0.12 99.95 99.85 0.30 0 95.76 95.77 6.92 1.15 

jpeg2K vs. bright. 98.33 99.38 0 1.81 94.32 94.32 0.62 0 98.95 100 0.15 0 100 100 0 0 

jpeg2K vs. contr. 97.08 97.08 5.00 0.83 89.69 90.56 6.42 12.47 94.20 97.76 1.94 2.54 79.42 92.88 0.77 13.46 

jpeg2K vs. hist.eq. 100 100 0 0 99.38 99.51 0.62 0.37 100 100 0 0 100 100 0 0 

jpeg vs. filter. 90.33 89.51 12.64 8.33 98.76 98.89 1.48 0.74 99.20 98.13 0.19 2.54 90.38 90.96 0.38 16.69 

jpeg vs. rot. 98.26 100 0 0 100 100 0 0 100 100 0 0 100 100 0 0 

jpeg vs. scal. 97.33 100 0 0 100 100 0 0 100 100 0 0 98.07 99.23 0 1.54 

jpeg vs. bright. 100 100 0 0 100 100 0 0 100 100 0 0 100 100 0 0 

jpeg vs. contr. 100 100 0 0 98.52 98.83 0 2.35 97.95 98.96 0 2.09 91.34 90.00 0 10.73 

jpeg vs. hist.eq. 100 100 0 0 100 100 0 0 100 100 0 0 100 100 0 0 

filter. vs. rot. 89.65 98.51 0 2.99 99.48 99.79 0.10 0.31 99.54 99.88 0 0.25 98.39 99.19 0 1.61 

filter. vs. scal. 98.42 100 0 0 100 100 0 0 100 100 0 0 96.15 98.65 0 2.69 

filter. vs. bright. 100 100 0 0 100 100 0 0 100 100 0 0 100 100 0 0 

filter. vs. contr. 100 100 0 0 98.76 98.95 0.74 1.36 98.05 98.28 0 3.43 88.46 92.69 2.69 11.92 

filter. vs. hist.eq. 100 100 0 0 100 100 0 0 100 100 0 0 100 100 0 0 

rot. vs. scal. 100 98.82 1.67 0.69 97.96 99.26 1.11 0.37 97.55 97.84 3.43 0.90 96.34 97.50 1.15 3.85 

rot. vs. bright. 100 99.65 0 0.64 99.88 99.94 0 0 100 100 0 0 100 100 0 0 

rot. vs. contr. 99.67 99.24 0 1.53 97.71 98.58 0.12 2.72 98.95 99.10 0 2.79 99.61 95.96 0.38 0.38 

rot. vs. hist.eq. 100 99.65 0.69 0 96.23 96.79 3.95 2.47 94.90 98.13 3.73 0 100 98.85 2.31 0 

scal. vs. bright. 90.00 99.93 0.14 0 99.81 99.88 0 0.25 100 100 0 0 100 100 0 0 

scal. vs. contr. 89.58 99.93 0 0.14 95.99 98.27 0.49 2.96 98.20 98.43 0 3.23 92.31 95.00 2.31 7.69 

scal. vs. hist.eq. 100 99.93 0.14 0 95.55 95.74 3.58 4.94 97.40 99.40 1.19 0 100 99.04 1.92 0 

bright. vs. contr. 92.33 92.85 1.94 12.36 99.38 99.69 0.49 0.12 95.95 96.12 0 7.76 100 100 0 0 

bright. vs. hist.eq. 100 100 0 0 100 100 0 0 100 100 0 0 100 100 0 0 

contr. vs. hist.eq. 100 100 0 0 98.09 99.69 0 0.62 100 100 0 0 100 100 0 0 
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omitted in the experiment (i.e. not considered as an attack) then 

the detection rate goes up to 95%.  

C. Discussion 

The performance of our complete scheme depends on the 

available watermarking capacity offered by the RONI 

watermarking scheme under constraints of robustness and 

imperceptibility (see Section II.A). This capacity has to be 

allocated to L1, L2 and L3. Let us consider for example one 12 

bit encoded MRI of 256x256 pixels with a ROI representing 50% 

of the image as well as an achievable robust capacity of about 

1000 bits (See Section II.A). In daily medical practice, priority 

should be given to L1 and L2. Considering a cryptographic hash 

and hamming codes (see section II-B), a few hundred of bits are 

required so as to encode L1 and L2-signatures, i.e. H1 and H2. 

Our example MRI can be protected by allocating 280 bits to L1 

and L2. 160 bits are used to encode H1 and 100 bits to encode 

H2 (using hamming codes) allowing us to protect 5 64×64 

blocks with some overlap (e.g. 4 of them cover 50% of the 

image while the last one is centered on the image), giving 

access to a good modification location [13]. Considering H1 is 

embedded in a fragile way (see Section II.A), the rest of the 

available robust capacity is assigned to achieve L3 permitting 

us to protect 4 of the previous 5 blocks (   
  =188 bits – see 

Section III.A). To gain in terms of capacity, it is also possible to 

work with bigger blocks. As illustrated by this small example, 

different strategies can be drawn so as to allocate the RONI 

watermarking capacity to H1, H2 and H3, and achieved a 

protection even for small images. Notice that, as reported in 

[31], a typical size for many medical image modalities is 

512x512 pixels and their size is continuously increasing with 

technology advances. 

More generally, if the capacity allows it, one can work with 

blocks of smaller size or with overlapped blocks. Both cases 

will lead to a better local modification approximation as well as 

to a better detection and identification of global image 

processing. A hierarchical view of the modification can also be 

considered based on the fact geometric moments of one block 

can be expressed as a linear combination of its sub-blocks ones 

[40]. 

One can also adjust the size of the L3 -signature per block, by 

reducing or increasing the number of geometric moments to 

embed. For instance, if more order moments are used, we can 

assume that image processing detection will be improved. The 

complexity of the local modification model can also vary. For 

example, to estimate the parameters of a “symmetric” 2D 

Gaussian (i.e. 1=2= in Eq.(1)) we just have to embed the 4 

first geometric moments instead of 6 (see above).  

For global modification, our approach is limited to a priori 

identified image modification; modifications we know an 

image may undergone. Nevertheless, one just has to update the 

L3-analysis process of our system with a new classifier if non 

anticipated modifications have to be considered. Results given 

above (see section IV.B) consider only 6 geometric moments 

from one pixel block. They are already high and not so sensitive 

to the block size (see Table II). They would be better if more 

blocks were considered.  

It is important to notice that our L3-signature is not secure. If 

a pirate knows the image block partition, he or she can take 

advantage of the linearity and unipolarity properties of our local 

modification model. Indeed she or he may counteract or reduce 

the efficiency of our protection by conducting a complex 

tamper in a block which ensures invariance of the geometric 

moments (i.e.   
 =  

  ). Already, by adding a modification 

which amplitude is at the same time positive and negative, our 

system will fail to give the right estimation (see section III.A). 

However, such a lesion removal may not be so obvious to do, 

especially if the block partition is made secret with block 

overlapp.  

Actually our system badly handles combination of local and 

global modifications. Let us consider a block tamper 

constituted of a low pass filter with the addition of a generalized 

2D Gaussian as local modification. Because the filtering 

operation does not impact the zero order geometric moment but 

the others, we will not correctly estimate the parameter of the 

generalized 2D Gaussian (see Eqs. (6)(7)(8)(10)). In fact, this 

error keeps limited if the local modification is of greater energy 

than the distortion induced by the low pass filter. On the other 

hand, the local tamper influences all geometric moments and 

may render impossible the identification of low pass filter 

operation. Nevertheless, by working on the whole ROI, 

considering also several blocks, our system can be improved by 

means of a better decision process. This latter is very simple by 

now.  

V. CONCLUSION 

We have proposed a system for verifying the integrity of 

medical images. This system distinguishes three levels of 

integrity decision: detection, localization and approximation of 

the image alteration. For the latter level, we suggested 

approximating any malevolent local modifications by its 

nearest 2D generalized Gaussian function whose parameters 

are derived from the image geometric moments. In case the 

image is globally processed, these image moments can be also 

used to identify the type of the modification. Our system can 

help to find out the motivation of the tampering, but it remains 

limited to the detection of predefined kinds of image 

modification or tampering. Future work will focus on 

identifying a wider range of modifications, single or combined, 

and especially, their strength when they are global over the 

image. 

TABLE III DETECTION RATES OF OUR MULTI-CLASS CLASSIFIER 

CONSIDERING SIX GEOMETRIC MOMENT RATIOS   M00,  M01,  M10,  M02, 

 M11,  M20) ISSUED FROM A BLOCK OF 128×128 PIXELS.  

Detection 

rate (%) 
MRI Mammography CT Echography 

JPEG2000 90.67 70.92 72.10 43.77 
JPEG 96.83 99.26 98.90 93.96 

Filtering 96.33 99.51 97.60 80.00 

Rotation 95.00 97.91 99.20 98.87 
Scaling 99.67 98.28 99.60 99.62 

Brighten 75.00 99.54 100 100 

Contrast 76.04 89.57 83.25 83.49 
hist. equ 100 94.48 100 100 
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