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Résumé

Cette thèse a un objectif pratique. On cherche la réponse à la question suivante "Est-il
possible d'identi�er les stations de base (BS) mal positionnées dans la topologie d'un réseau
WiMAX par analyse du tra�que ?". Cette question est importante pour la plani�cation
et pour l'exploitation du réseau. La réponse pourrait être une explication des motifs pour
lesquelles les performances des réseaux sans �l, mesurées en pratique, sont inférieures aux
performances estimées dans la phase de conception.

L'approche choisie dans cette thèse est fondée sur l'analyse d'une base de données conçue
après la surveillance du tra�que dans un réseau WiMAX pour une durée de huit semaines.

Worldwide Interoperability for Microwave Access (WiMAX) est une technologie basée
sur le standard IEEE 802.16, capable d'o�rir des applications IP avancées (voix, vidéo et
données) aux utilisateurs en mouvement ou en repos. L'une des caractéristiques les plus
importantes d'un réseau WiMAX est sa nature ad hoc. Chaque utilisateur localisé dans
l'une des cellules du réseau doit obtenir l'accès à n'importe quel moment. Donc, le nombre
d'utilisateurs n'est pas connu à priori ni le volume de tra�que non plus.

Cette thèse analyse le tra�que d'un réseau de communications sans �l implémenté en
technologie WiMAX composé par 67 BS pour l'identi�cation des BS incorrecte positionnées.
On a constitué à ce but une base de données contenant des enregistrements de tra�que sur
les voies ascendante et descendante pour chaque BS de durée de huit semaines à la �liale de
Timisoara d'Alcatel-Lucent. Cette base de données a été mise à la disposition de l'auteure de
la thèse dans le cadre d'un contrat de recherche entre la �liale de Timisoara d'Alcatel-Lucent
et le département de télécommunications de la Faculté d'Electronique et Télécommunications
de l'Université "Politehnica" de Timisoara. La base de données est formée par des séquences
de valeurs numériques en représentant le nombre total de paquets sur les voies ascendante
et descendante pour chaque BS.

Prenant en compte le volume d'information important contenu dans cette base de don-
nées, on a choisi une approche de type fouille de données. Cette approche a à la base la
méthodologie standardisée CRoss Industry Standard Process for Data Mining (CRISP-DM),
fréquemment utilisée par les spécialistes en fouille de données pour résoudre des problèmes.
Cette méthodologie suppose les étapes suivantes :

1. Comprendre le problème,

2. Comprendre les données,
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3. La préparation des données,

4. La modélisation,

5. L'évaluation de la qualité du modèle,

6. L'implémentation de la solution �nale du problème.

La première étape d'un projet de fouille de données est de comprendre le problème à
résoudre. Cette étape est implémentée itérativement par collaboration avec d'autres étapes
comme la compréhension des données ou l'évaluation. La deuxième étape du projet de
fouille de données suppose la compréhension des données. Cette étape est basée sur la pre-
mière étape et a une implémentation itérative aussi. L'étape de compréhension des données
peut être vue comme une contre réaction pour l'étape de compréhension du problème. Une
première compréhension du problème permet une compréhension préliminaire des données.
Avec cette connaissance acquise, le processus de compréhension des données est amélioré et
en conséquence le processus de compréhension du problème est amélioré aussi. La troisième
étape du projet de fouille de données consiste en la préparation des données. Générale-
ment les données brutes sont a�ectées par des imperfections des traducteurs et des systèmes
d'acquisition de données, par exemple les traces contenues dans la base de données fournie
par Alcatel-Lucent continent des données manquantes. C'est le motif pour lequel l'étape de
préparation des données est nécessaire dans un projet de fouilles de données. Cette étape
consiste en la représentation des données dans la forme la plus favorable pour l'étape suivante
du projet de fouille de données, celle de modélisation. Comme dans le cas des paires d'étapes,
composée par l'étape de compréhension du problème et par l'étape de compréhension des
données, les étapes de préparation des données et de modélisation sont inters dépendants.
L'étape de modélisation est l'une de plus importantes étapes d'un projet de fouille de don-
nées parce qu'elle suppose la représentation des données dans la forme la plus favorable pour
l'extraction des paramètres utiles pour l'application considérée. L'étape d'évaluation est
aussi très importante. Elle permet l'appréciation de la qualité du modèle choisi. Elle a aussi
une fonction régulatrice dans le projet de fouille de données en in�uençant la première étape
du projet, la compréhension du problème. La dernière étape du projet de fouille de données
suppose l'implémentation. Cette méthodologie est appliquée dans la thèse pour extraire des
informations, pour leur interprétation et pour proposer des solutions.

Les performances d'un réseau de communications sans �l dépendent de quelques carac-
téristiques de nature di�érente : des caractéristiques techniques qui apparaissent dans les
phases de conception, implémentation et développement, des caractéristiques sociales comme
les nécessités et le niveau d'éducation des utilisateurs et des fournisseurs de services ou des
caractéristiques �nanciers. L'un des plus importantes caractéristiques techniques est une
architecture e�ciente du réseau. Plusieurs autres caractéristiques techniques in�uencent les
performances d'un réseau WiMAX : le nombre et la densité des utilisateurs, les types des
services o�erts aux utilisateurs, le type de tra�que (vidéo, de données,...).
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Le choix du tra�que de télécommunications comme objet d'analyse dans cette thèse, est
justi�ée par les raisons suivants :

1. Le tra�que peut être mesuré,

2. Le tra�que peut et doit être optimisé pour pouvoir élaborer des stratégies d'augmentation
des performances du réseau (spécialement dans le cas des réseaux sans �l, comme c'est
le cas de la technologie WiMAX).

Ce choix a orienté la thèse vers la recherche des méthodes d'analyse des séries temporelles.
L'analyse des séries temporelles est devenue aujourd'hui une provocation pour des nombreux
chercheurs. Ses origines peuvent être trouvées dans les recherches en mathématiques mais
des nos jours l'analyse des séries temporelles est un domaine pluridisciplinaire qui exploite
des résultats obtenus en mathématiques, traitement statistique du signal, fouille de données,
ingénierie etc. C'est le motif pour lequel cette thèse a un caractère multidisciplinaire en
intégrant les compétences en informatique du département LUSSI de Telecom, Brest, France,
avec les compétences en télécommunications du département de télécommunications de la
Faculté d'Electronique et Télécommunications de l'Université "Politehnica" de Timisoara,
Roumanie.

L'une des di�cultés majeures de l'analyse des séries temporelles de grande longueur (qui
correspondent à un volume grand de données) est la complexité de calcul élevée. Cette
complexité de calcul peut être réduite par une représentation des données plus favorable.
L'une des étapes de la méthodologie CRISP-DM, plus précisément l'étape de préparation
des données, suppose la représentation des données dans une forme plus favorable. Une telle
représentation peut être obtenue en utilisant des ondelettes.

La transformée en ondelettes discrète (DWT) est utilisée pour l'analyse des séries tem-
porelles et implique une complexité de calcul réduite. La transformée en ondelettes a été
utilisée souvent pour l'analyse des séries temporelles des nos jours. L'une des principales
propriétés des ondelettes est que celles-ci sont bien localisées en temps, étant appropriées
pour l'analyse des signaux non stationnaires (qui contient des composantes transitoires et
des structures fractales).

Un autre avantage des transformées en ondelettes est la variété des ondelettes mères
disponibles, ce qui permet la sélection de la plus appropriée pour l'application considérée.
L'un des plus importants paramètres pour la sélection de l'ondelette mère est le nombre de
ses moments nuls. Certaines caractéristiques de l'ondelette mère dépendent de son nombre
de moments nuls : la longueur du support ou sa localisation temps-fréquence. Il y a des
signaux, comme par exemple les processus aléatoires en manifestant de la dépendance à long
terme (LRD), dont l'analyse spectrale aux basses fréquences est très di�cile parce que leur
transformée de Fourier tende vers l'in�ni quand la fréquence tende vers zéro. On peut réaliser
cette analyse spectrale à l'aide des ondelettes avec un nombre de moments nuls correctement
choisi.
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Le cadre de recherche associé à cette thèse a les axes suivants :

� Les ondelettes - une introduction est présentée en Chapitre 1,

� Le traitement statistique du signal - les concepts de base sont présentés en Chapitre 2,

� L'analyse des séries temporelles - réalisée dans les Chapitres 3 et 4,

� La fouille des données - traitée dans le Chapitre 3 (où est mise en évidence et développée
la méthodologie CRISP-DM) et dans le Chapitre 4,

� Les réseaux WiMAX - décrites dans le Chapitre 3 et analysés dans les Chapitres 3 et
4.

Comme on l'a déjà dit, le but de cette thèse est de répondre à la question "Est-il possible
d'identi�er les stations de base mal positionnées dans la topologie d'un réseau WiMAX par
analyse du tra�que ?" En supposant que le tra�que associé avec une BS mal positionnée est
plus lourde (moins �uent) que le tra�que associé avec une station de base bien positionnée,
on a élaboré deux approches pour l'évaluation de la �uence du tra�que.

La première approche est basée sur la supposition que le risque de saturation d'une BS
avec tra�que lourde est réduit. En conséquence, il est nécessaire d'estimer le risque de satu-
ration de chaque station de base. Ce but est équivalent avec l'estimation du moment quand
une station de base se saturera. Donc, le premier objectif de cette thèse est de proposer une
approche pour la prédiction des séries temporelles. Cette approche est basée sur une analyse
multi résolution (MRA) du signal associée à une décomposition orthogonale réalisées à l'aide
de la transformée en ondelettes stationnaire (SWT) suivie par une modélisation statistique à
l'aide des modèles Auto Regressive Integrated Moving Average (ARIMA) pour l'estimation
de deux caractéristiques du tra�que : la tendance à long terme et la variabilité autour de
cette tendance. La MRA est une propriété importante de la transformée en ondelettes, par
laquelle les signaux peuvent être décomposés en éléments de haute fréquence (les détails)
et des composants de basse fréquence (les approximations). A partir d'une séquence de
coe�cients d'approximation et d'une séquence des coe�cients de détails d'une résolution
quelconque, on peut reconstruire sans pertes, le signal analysé au niveau supérieur de ré-
solution. La décomposition du signal qui doit être analysé en séquences d'approximation
et de détails se réalise itérativement, chaque niveau de décomposition correspondant à une
certaine résolution. On utilise la transformée en ondelettes non décimée, appelée aussi sta-
tionnaire (qui est calculée à l'aide de l'algorithme à trous) même si elle est redondante et
demande une complexité algorithmique plus importante que la DWT. Cette transformée est
invariante aux translations grâce à l'élimination de la décimation entre les échelles succes-
sives et ainsi elle présente l'avantage d'un choix de �ltres plus simple que pour la transformée
décimée. Le modèle général ARIMA a trois types de paramètres : les paramètres AR (p),
le paramètre de di�érenciation (d) et les paramètres MA (q). Ces paramètres peuvent être
estimés en utilisant la méthodologie de Box-Jenkins. L'approche générale de la méthodolo-
gie de Box-Jenkins consiste à di�érencier la série chronologique pour la rendre stationnaire
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(déterminer le niveau d'intégration d). La détermination des ordres p et q dépende de la
fonction d'auto corrélation (ACF) et de la fonction d'auto corrélation partielle de la série
qu'on veut modéliser. Le modèle statistique pour la série qu'on veut prédire, réduit le modèle
de régression linéaire multiple à seulement deux caractéristiques : la tendance à long terme
de la série (décrite par les coe�cients d'approximation de la SWT) et sa variabilité autour
de cette tendance globale (décrite par les coe�cients de détails de la SWT). A�n d'estimer la
qualité de la prédiction des composantes de tendance et de variabilité obtenues en utilisant
les modèles linéaires des séries chronologiques, on doit séparer les données collectées en deux
segments : le premier segment est utilisé pour l'estimation des paramètres des deux modèles,
et le second segment est utilisé pour l'évaluation des performances des prédictions faites en
utilisant les modèles choisis. Appliquée à toutes les traces contenues dans la base de données,
cette approche a permis la réalisation d'une première classi�cation des BS du point de vue
de la �uence du tra�que, présentée à la �n du Chapitre 3.

La deuxième approche pour l'évaluation de la �uence du tra�que est basée sur l'analyse de
la LRD des séries temporelles qui composent la base de données. C'est un concept statistique
relativement nouveau en analyse du tra�que de télécommunications et le degré de LRD peut
être estimé à l'aide des ondelettes. Une série temporelle X(t) manifeste LRD si sa ACF
décrois lentement comme est indiqué dans l'équation :

ρ(k) ∼ Cpk
−α, (1)

avec α ∈ [0, 1] et Cp > 0.
Un processus aléatoire est dépendent à court terme (SRD) si sa ACF décrois rapidement.

Dans le domaine des fréquences l'équation précédente devient:

f(λ) ∼ Cf |λ|−β, (2)

où f(λ), λ→ 0 représente la densité spectrale de puissance de la série temporelle consid-
érée aux basses fréquences, β ∈ (0, 1) et Cf est une constante positive.

Cette propriété du tra�que a des implications importantes sur les performances, la con-
ception et l'implémentation du réseau.

L'estimation du dégrée de LRD se fait par l'estimation du paramètre de Hurst (H) de
la série temporelle analysée. Les paramètres α et β des dernières deux équations dépendent
de H. Ainsi pour 0.5<H <1 le processus aléatoire considéré manifeste LRD. Au fur et a
mesure que H s'approche de 1 la LRD devient plus forte. Une valeur de H de 0,5 ou plus
petite indique l'absence de la LRD ou la présence de la SRD. Il y a des diverses techniques
statistiques pour l'estimation du H, opérant soit dans le domaine temporel (la méthode de la
valeur absolue, la méthode de la variance et la méthode R/S) soit dans le domaine fréquentiel
(l'estimateur de Whittle et l'estimateur proposée par Abry et Veitch) décrites dans la thèse.

Quatre sources de LRD du tra�que des réseaux �laires sont fréquemment mentionnées
dans la littérature :

1. La LRD se trouve directement dans les sources des données en se manifestant comme
des périodicités cachées du tra�que,
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2. La LRD est un résultat de la combinaison des séquences de données générées dans des
communications point à multi-point ayant des lois de répartition à longues queues,

3. La LRD est le résultat du mécanisme de contre réaction du protocole TCP,

4. La LRD provient de l'architecture du réseau.

Du point de vue de la conception des réseaux, la source de LRD la plus intéressante est la
quatrième. Toutes les quatre sources de LRD se manifestent sur la voie descendante. Pour
la voie ascendante, quelques sources de LRD peuvent n'être pas considérées. En e�et on n'a
pas des transmissions point a multi-point sur la voie ascendante. Le mécanisme de contre
réaction du protocole TCP se manifeste moins sur la voie ascendante. Le positionnement
incorrect des BS est une source commune de LRD du tra�que sur les voies ascendante et
descendante.

Par des estimations, nous avons mis en évidence le fait que le tra�que WiMAX mani-
feste LRD. L'objectif du Chapitre 4 est de mettre en évidence les particularités du tra�que
WiMAX du point de vue de la LRD et de classi�er les BS ayant comme critère la �uence du
tra�que. Cette classi�cation des BS est présentée à la �n du Chapitre 4 et est en accord avec
la classi�cation faite à la �n du Chapitre 3, malgré le fait que toutes les deux classi�cations
ont été faites par des estimations statistiques. Par ce raison, la réponse à la question posée
au début de la thèse est a�rmatif, les BS mal positionnées dans la topologie d'un réseau
WiMAX peuvent être identi�ées par l'analyse du tra�que. Les résultats indiquent les BS qui
ont un mauvais positionnement. Ces dernières BS doivent être repositionnées à l'occasion
de la suivante session de maintenance du réseau.

Les résultats de cette thèse sont de nature théorique et pratique. Parmi les résultats
théoriques on peut mentionner les suivantes : l'analyse statistique de deuxième ordre des
coe�cients de la DWT présentée dans le Chapitre 2, l'estimateur du paramètre de Hurst
basé sur l'utilisation des ondelettes qui est approprié pour des séries temporelles stationnaires
au sens large proposé dans le Chapitre 2, et un nouveau test de stationnarité basé sur la
réitération de la méthodologie de Box-Jenkins proposé dans le Chapitre 3.

Parmi les résultats pratiques de la thèse on peut mentionner les suivantes. On a adapté
dans le chapitre trois un algorithme de prédiction pour des séries temporelles proposé pour
des réseaux �laires en [Papagiannaki et al, 2003] dans le cas du réseau WiMAX. Cette
méthode d'estimation est basée sur la SWT et sur des techniques statistiques d'analyse des
séries temporelles. Les principales contributions du chapitre trois sont mentionnées dans la
suite.

� La validation de l'algorithme adapté dans le cas des réseaux sans �l. On a obtenu
des estimations précises avec un coût de calcul réduit. Toutes les estimations ont été
obtenues en quelques secondes. Les BS avec un risque de saturation élevé ont été
identi�ées.
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� On a proposé une méthodologie de sélection de la plus appropriée ondelette mère
sur la base de leur localisation temps-fréquence. On a conclu, par la répétition des
estimations, que la plus appropriée ondelette mère est celle de Haar et que la plus
appropriée transformée en ondelettes est la SWT pour l'application considérée.

� L'algorithme obtenu après l'adaptation est assez �exible pour estimer des séries tem-
porelles de nature di�érente comme le tra�que dans les réseaux sans �l ou des séries
�nancières.

� On a comparé l'algorithme de prédiction proposé avec d'autres algorithmes de prédic-
tion développés dans notre équipe de recherche, basés sur l'utilisation des réseaux de
neurones en mettant en lumière l'utilité de l'algorithme proposé pour des prédictions
à long terme. L'algorithme proposé est plus rapide suite à l'utilisation des ondelettes
de la MRA et des moyennes calculées par semaine.

.
L'analyse du tra�que faite dans le quatrième chapitre a comme but l'identi�cation des

caractéristiques du réseau WiMAX analysée dans la thèse. La stratégie choisie à ce but
est basée sur la LRD du tra�que. La LRD du tra�que a un impact signi�catif sur les
performances du réseau. Ces performances dépendent d'une architecture e�ciente (avec
les BS correctement positionnées). Les principales contributions de l'auteure de la thèse
présentées dans le quatrième chapitre sont mentionnées dans la suite.

� On a analysé le tra�que sur les voies ascendante et descendante et on a constaté que
ce tra�que manifeste LRD.

� On a identi�é une source de LRD du tra�que du réseau sans �l, les périodicités cachées
avec des périodes d'un semaine et d'un jour.

� En utilisant l'estimateur R/S pour le paramètre de Hurst, on a mis en évidence que
normalement le tra�que diurne d'une BS ne devrait pas manifester LRD.

� On a proposé une méthode d'estimation du paramètre de Hurst basée sur l'utilisation
des ondelettes plus performante que l'estimateur R/S. On a comparé une série d'estimateurs
du paramètre de Hurst par simulations en obtenant les meilleurs résultats pour l'estimateur
basé sur l'utilisation des ondelettes.

� On a analysé le positionnement des BS dans l'architecture du réseau WiMAX, en
appliquant comme critère la règle que les BS pour lesquelles le nombre de jours avec
LRD est grand sur la voie ascendante et descendante sont incorrectement positionnées.
Ceux-ci devraient être repositionnées.

� On a observé que les BS qui ont un positionnement incorrect ont un risque réduit
de saturation. Cette observation permet de véri�er les résultats d'estimation présentés
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dans le troisième chapitre à l'aide des résultats d'estimation présentés dans le quatrième
chapitre et réciproquement. D'un total de soixante sept BS, les résultats de l'analyse
du positionnement e�ectuée ne sont pas concluants que pour une seule BS.

Le cinquième chapitre est dédié aux conclusions de la thèse et aux perspectives. Parmi
ces perspectives on peut énumérer les suivantes. La manifestation de la LRD pourrait être
la conséquence des anomalies de tra�que. C'est pourquoi, une méthode d'identi�cation des
anomalies de tra�que pourrait être intéressante pour la continuation de la recherche. Un
autre sujet pour des futures recherches pourrait être l'analyse statistique des coe�cients de
la transformée en ondelettes discrète des processus aléatoires non stationnaires.
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Introduction

This thesis has a practical objective. It consists in �nding an answer to the following
question: "It is possible to identify the base stations (BS) which are bad positioned in
a Worldwide Interoperability for Microwave Access (WiMAX) network?" The question is
important for the planning and exploitation of WiMAX networks. The answer could be
an explanation of the reasons for which the performance of WiMAX networks measured in
practice is inferior to the performance estimated in the designing phase.

Our approach is based on the tra�c analysis in a WiMAX network, composed by sixty-
seven BSs, for a time interval of eight weeks. Taking into consideration the high volume
of information, a data-mining approach was preferred. It is based on the Cross Industry
Standard Process for Data Mining (CRISP-DM) methodology. This methodology is applied
in the present thesis to extract information, to interpret it and to propose solutions. The
selection of tra�c as object of analysis is justi�ed by the following reasons:

1. It can be measured,

2. Using planning and exploitation strategies, it allows the increasing of the performance
of the network (especially in the case of wireless communications such as the WiMAX
technology).

This selection oriented the thesis toward the research of time series analysis methods.
Time series analysis has become a challenging issue for many researchers. Its origins can
be found in mathematical research but today time series analysis is a multi-disciplinary
�eld exploiting results obtained in mathematics, statistical signal processing, data mining,
or engineering. This is the reason why the present thesis has a multi-disciplinary character
as well, integrating the competences in informatics from the department LUSSI of Telecom
Bretagne, Brest, France with the competences in communications from the Communications
department of the Electronics and Telecommunications Faculty of "Politehnica" University
from Timisoara, Romania.

One of the major di�culties of the analysis of time-series with long length (which corre-
spond to large amount of data) is the big computational complexity involved. The computa-
tional complexity can be reduced by representing the data in a more favorable form. One of
the phases of the CRISP-DM methodology, namely data preparation, supposes data repre-
sentation in a more favorable form. Such a representation can be obtained using wavelets. A
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discrete wavelet transform (DWT) of the time-series is sparse and involves a reduced compu-
tational complexity. The Wavelet Transform has been used for time series analysis in many
papers in recent years [AFTV03], [PTZD03], [RMBS10], [RSML10], [SMLI10], [WS02]. One
of the main properties of wavelets is that they are localized in time (or space) which makes
them suitable for the analysis of non-stationary signals (signals containing transients and
fractal structures).

The research framework associated with the present thesis has the following axes:

1. Wavelets - an introduction is presented in Chapter 1,

2. Statistical signal processing - basic tools are presented in Chapter 2,

3. Time-series analysis - performed in Chapter 3 and Chapter 4,

4. Data-mining - performed in Chapter 3 (where the CRISP-DM methodology is develo-
ped and highlighted) and Chapter 4,

5. WiMAX networks - described in Chapter 3 and analyzed in Chapter 3 and Chapter 4.

As it was already said, the goal of this thesis is to answer the question "It is possible to
identify the BSs which are bad positioned in a WiMAX network topology by tra�c analysis?"
Assuming that the tra�c associated with a BS bad positioned is heavier than the tra�c
associated with a BS well positioned, two approaches for the appreciation of the heaviness
of the tra�c were developed. The �rst approach is based on the supposition that a BS with
heavy tra�c has a reduced risk of saturation. Hence, it is necessary to appreciate the risk of
saturation of each BS. This is equivalent with the estimation of the moment when the BS will
saturate. So, the �rst objective of this thesis is to propose an approach for predicting time
series. There are two types of prediction on short term and on long term. Both can be done in
the wavelets domain with the aid of a multiple resolution decomposition of the signal using
the Stationary Wavelet Transform (SWT). It is followed by an Autoregressive Integrated
Moving Average (ARIMA) modeling in the case of long term prediction or by the utilization
of Neural Networks (NN) in the case of short term prediction. These two types of prediction
were compared in some companion papers which were elaborated in the department LUSSI
from Telecom Bretagne, showing the superiority of NNs for short term prediction. Taking
into consideration the fact that the moment of saturation could be situated far in the future
we have preferred in this thesis the long term prediction approach based on ARIMA. Applied
to all the traces from our database, this approach allowed a �rst classi�cation of BSs from
the heaviness of tra�c point of view, presented at the end of Chapter 3.

The second approach for the appreciation of the heaviness of the tra�c is based on Long
Range Dependence (LRD) analysis. This is a relative new statistical concept in communi-
cation tra�c analysis and can be implemented using wavelets as well. LRD is introduced
in Chapter 2 in association with some of its estimators. The estimation of LRD degree
is realized trough the estimation of the Hurst parameter of the time-series under analysis.
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The LRD analysis of WiMAX tra�c is presented in Chapter 4. It can be assumed that a
heavier tra�c has a stronger LRD. This property of tra�c has important implications on
the performance, design and dimensioning of the network. By performing simulations and
analysis, our results demonstrate that WiMAX tra�c exhibits LRD behavior. The objective
of Chapter 4 is to highlight the particularities of WiMAX tra�c from a LRD perspective and
to classify the BSs based on the heaviness of tra�c. This second classi�cation of the BSs,
presented at the end of Chapter 4, is in agreement with the �rst classi�cation presented at
the end of Chapter 3, despite the fact that both classi�cations were performed by statistical
estimations. For this reason, the response to the question generic for the present thesis is
a�rmative; the bad positioned BSs can be identi�ed by tra�c's analysis. The results show
which BSs have a good localization in the topology of the network and which have not.
These BSs must be repositioned when the next session of the network's maintenance will
take place.

The results that we will present in this thesis are both of theoretical and practical nature.
Between the theoretical results could be mentioned the following:

1. The second order statistical analysis of the wavelet coe�cients presented in Chapter 2,
which is original, allowed to give an elegant explanation of the Abry-Weitch estimator
of the Hurst parameter. The estimation of the Hurst parameter is necessary to detect
the presence of LRD in a time series. The same statistical analysis is at the basis of
another theoretical contribution of this thesis, the Hurst parameter estimator based on
wavelets which works for wide sense stationary input time-series proposed in Chapter
2. This is an original estimator which is very simple to be used but it has a limited
applicability because the class of wide sense stationary random processes has a reduced
degree of generality.

2. A new test of stationarity based on the reiteration of the Box-Jenkins methodology
proposed in Chapter 3. Its utility is highlighted by comparisons with the classical
stationarity tests based on the correlation or partial correlation functions. These the-
oretical results are not very general but could represent starting points for future
research.

Between the practical results of the thesis we mention the following:

1. The adaptation of an algorithm previously published for the forecasting of wireless
tra�c time-series, presented in Chapter 3,

2. The identi�cation of the best wavelet transform for tra�c forecasting and of its best
features in Chapter 3,

3. The selection of the best Hurst parameter estimators based on simulations presented
in Chapter 4,

4. The comparative analysis of the results presented at the ends of Chapters 3 and 4.
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The Matlabr codes required for the implementation of the estimation methods described
in Chapters 3 and 4 represent personal contributions of the author of the thesis.



Chapter 1

Wavelet Transforms

The purpose of this chapter is to give a short introduction to the wavelet transforms and
the wavelet families which will be used in the following sections. The transform of a signal
is another form to represent it. It does not a�ect the information carried by the signal. In
this context, a wave (see Figure 1.1, left) is an oscillating periodic function of time or space.
In contrast, wavelets (see Figure 1.1, right) are localized waves. They have their energy
concentrated in time or space and are suited to analysis of transient signals. While Fourier
transform uses waves to analyze signals, the wavelet transform uses wavelets of �nite energy.

Figure 1.1: Plots of a wave and of a wavelet.

The wavelet theory deals with the properties of wavelets. It is a relatively new mathe-
matical tool which appeared around 1980 when Grossman and Morlet [GM84], a physicist
and an engineer, broadly de�ned wavelets in the context of quantum physics. Based on
physical intuition, these two researchers provided a new way of thinking for wavelets based
on physical intuition.

In 1985, Stephane Mallat [Mal99] gave wavelets an additional jump-start through his
work in digital signal processing. He discovered some relationships between quadrature
mirror �lters, pyramid algorithms, and orthonormal wavelet bases. An orthonormal wavelet

5



6 CHAPTER 1. WAVELET TRANSFORMS

basis of a given Hilbert space is an orthonormal basis of this space whose elements are
obtained by translations with integers of a unique function named mother wavelets.

A couple of years later, in 1988, Ingrid Daubechies [Dau88] used Mallat's work to con-
struct a set of wavelet orthonormal basis functions that are perhaps the most elegant, and
have become the cornerstone of wavelet applications today.

Wavelet theory is used for analyzing various data studied in various domains such as
mathematics [VK95], science [JMR01], engineering [SSPW02], economics [GSW01] and social
studies: time series (as will be shown in the following sections of this thesis), radar signal
[Kol11], image [CS05], sound [Che96], video, mathematical functions, etc.

1.1 The Wavelet Transform

In the following we will present the main steps in the evolution of the wavelet transform
(WT). As already said, the transform of a signal is nothing more than another form of
representation of that signal. We will consider as starting point the Fourier transform. It is
an alternative representation of a signal in the frequency domain. It has various forms: the
Fourier series used for the representation of periodic signals, the Fourier transform in discrete
time used for the representation of discrete in time signals, the short time Fourier transform
which is a time-frequency representation and so on. Accordingly, there are di�erent WTs,
the wavelet series, the discrete WTs, the continuous WT.

1.1.1 Fourier Transform

Fourier series are named in honour of the french mathematician and physicist Joseph
Fourier (1768-1830), who made important contributions to the study of trigonometric series.
In 1807, Fourier presented a memoir [Fou08] to the "Institut de France" in which he claimed
that any periodic signal could be represented by a series of harmonically related sinusoids.

The concept can be extended to the Fourier transform (FT), which applies to aperiodic
signals. The development of this representation for aperiodic signals in continuous time is
one of Fourier's most important contribution, [OW96]. FT is a mathematical tool used to
transform a signal from time-domain into frequency-domain. Being given a signal x(t), the
FT, or the spectrum of this signal, X(ω), is de�ned as:

XFT (ω) =

∫ ∞
−∞

x(t)e−jωtdt, (1.1)

while the inverse FT is given by:

x(t) =
1

2π

∫ ∞
−∞

X(ω)ejωtdω. (1.2)

The di�erence between the FT and the Fourier series is the following: a Fourier series can
only be applied to periodic signals and separates them into a number of discrete frequency
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components, while the FT can be used to break aperiodic signals into an in�nite number of
continuous frequency components using the integral, [Bou05].

1.1.2 Short-Time Fourier Transform

The FT do not clearly indicate how the frequency content of a signal changes over
time. Therefore, the Short-Time Fourier Transform (STFT), or windowed Fourier transform,
was introduced. STFT extracts several frames of the signal which can be assumed to be
stationary, to be analyzed with a window that moves with time, [Add02].

The STFT of a signal x(t) is de�ned as:

XSTFT (τ, ω) =

∫ ∞
−∞

x(t)w(t− τ)e−jωtdt, (1.3)

where w(t) is the window function and X(τ, ω) is the FT of x(t)w(t− τ), a complex function
representing the phase and the magnitude of the signal over time and frequency.

The time resolution and frequency resolution of a STFT basis element is equal to those
of the window. Narrow windows give good time resolution, but poor frequency resolution.
Wide windows give good frequency resolution, but poor time resolution and may also violate
the condition of stationarity, for signals which are stationary on portions. The e�ect of
the selection of a window too long will be the smoothening of the analyzed signal and the
information contained in its parts with rapid variations will be recovered with di�culty from
its STFT. So, the window should be carefully chosen because it does not change during the
period of analysis. Therefore, the time and frequency resolutions will remain unchanged
on the entire duration of the analysis performed using the STFT, these resolutions being
imposed by the window selected. A particular case of STFT is the Gabor Transform (1946)
[Gab46] which uses a Gaussian window.

1.1.3 Wavelet Transform

The Continuous Wavelet Transform (CWT), introduced by Grossman and Morlet, was
developed as an alternative approach to the STFT, to overcome the problem of constant
resolution. It is done in a similar way as the STFT, in the sense that the signal is multiplied
with a function, the wavelet, similar to the window function in the STFT. The transform is
computed separately for di�erent segments of the time-domain. This transform is capable of
providing the time and frequency information simultaneously, hence giving a time-frequency
representation of the signal.

A wavelet is used to analyze a given function or continuous-time signal at a speci�ed
scale. This function plays the role of the window from the case of STFT, but it has a second
parameter, additional to the position, the scale. It can be moved to various locations of
the signal as shown in Figure 1.2. To highlight the in�uence of the additional parameter,
in Figure 1.3 are represented three wavelets of the same type, having the same position but
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di�erent scales. Each of these three wavelets allows the analysis of a signal at a di�erent scale
by translations across its waveform, obtaining three di�erent representations which will be
named in the following scale components. Usually one can assign a frequency range to each
scale component. Each one can then be studied with a resolution that matches its scale.

Figure 1.2: Location in time of a wavelet with a given scale.

Figure 1.3: Same wavelet at a speci�ed position and di�erent scales.

To analyze signal structures of very di�erent sizes, it is necessary to use time-frequency
atoms with di�erent time supports. A linear time-frequency transform correlates the signal
with a family of waveforms that are well concentrated in time and in frequency. These
waveforms are called time-frequency atoms [Fla93].

The CWT decomposes signals over dilated and translated wavelets. A mother wavelets
is a function, ψ ∈ L2(<), with a zero average:∫ ∞

−∞
ψ(t)dt = 0, (1.4)

normalized (||ψ|| = 1), and centered in the neighborhood of t = 0.
A family of time-frequency atoms (wavelet functions) ψu,s(t) are generated by translating

and dilating the mother wavelets, ψ:

ψu,s(t) =
1√
s
ψ

(
t− u
s

)
, (1.5)

that can form a basis. These atoms remain normalized: ||ψu,s|| = 1.
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1.1.4 Wavelet Transform versus Fourier Transform

Wavelet theory extends the ideas of the traditional Fourier theory. While the FT is
useful for analyzing the spectral content of a stationary signal and for transforming di�cult
operations into very simple ones in the Fourier dual domain, it can not be used for the
analysis of non-stationary signals or for real time applications. In this case are required
time-frequency representations such as the STFT or the CWT. The CWT is a powerful
time-frequency signal analysis tool which it is used in a wide variety of applications including
biomedical signal processing, data mining, image compression, pattern recognition, etc. The
CWT is one of the most important methods that are used to reduce the noise which perturbs
non-stationary signals and to analyze the components of non-stationary signals, for which
the traditional Fourier methods cannot be applied directly.

The wavelets have some properties: have good time-frequency (time-scale) localization,
can represent data parsimoniously, can be implemented with very fast algorithms and are well
suited for building mathematical models of data. The wavelet approach of signal analysis is
also �exible in handling irregular data sets. Singularities and irregular structures often carry
essential information in a signal. So, the CWT has advantages over the STFT for representing
functions that have discontinuities and sharp peaks, and for accurately decomposing and
reconstructing �nite, non-periodic and/or non-stationary signals.

The most interesting dissimilarity between these two kinds of transforms is that individual
wavelet functions are localized in time. Fourier sine and cosine functions are not. This
localization feature, along with wavelets localization in frequency, makes many functions
and operators using wavelets "sparse" when transformed into the wavelet domain. This
sparseness, in turn, results in a number of useful applications such as data compression,
detecting features in images, and removing noise from time series.

Mathematically speaking, the CWT of a signal is a collection of scalar products which
factors are the analyzed signal and a family of wavelets, de�ned in equation (1.5). All these
wavelets are generated by translations (see the index u in (1.5)) and dilations (see the index
s) of the mother wavelets, ψ . Hence the CWT is a bivariate function, having as variables u
and s. One thing to remember is that the CWT has a large set of possible kernels (mother
wavelets). Thus wavelet analysis provides immediate access to information that can be
obscured by other time-frequency methods such as Fourier analysis.

There are also some similarities between the transforms obtained by the discretization of
the CWT and STFT. The discrete transforms obtained by the discretization of continuous
transforms are expressed by matrices. The mathematical properties of the matrices involved
in the discrete transforms obtained by the discretization of the CWT and STFT are similar.
The inverse transform matrix for both the Fast Fourier Transform (FFT) and the discrete
WT is the transposed of the original. As a result, both transforms can be viewed as a
rotation in functions space. For the FFT, this new domain contains basis functions that are
sines and cosines. For the WT, this new domain contains more complicated basis functions
called analyzing wavelets [Mal99].
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1.2 Time-frequency Representations

Fourier transform theory states that a given function of time can be characterized either
in time or in frequency (spectral) domain. The transformation of a signal x(t) between the
time domain and the frequency domain can be done by computing the Fourier transform.
Fourier transform is indispensable as data analysis tool for stationary signals. But if we deal
with non-stationary signals the conventional Fourier transform becomes inadequate.

Time-frequency (time-scale) representation techniques overcome this problem as they
are capable of representing a given function of time in both time and frequency domain
simultaneously. These kind of representations aim to identify the parameters of a given
signal: the starting/ending moments, the energy or the power, the instantaneous amplitude,
the instantaneous frequency, the instantaneous frequency band, etc [IN98].

In Figure 1.4 is presented an ideal time-frequency representation of a given signal x(t),
composed by three non-overlapping sinusoids with frequencies in increasing order, each one
truncated at its period. The representation is done in three dimensional space having as
dimensions the time, the frequency and the amplitude.

Figure 1.4: An ideal time-frequency representation of the signal x(t).

This time-frequency representation realizes the perfect localization in time and frequency
(the moments of time t1 − t6 and the frequencies f1 − f3 can be perfectly localized in the
time-frequency plane).

The projection of the time-frequency representation on the plane (A, t) represents the
oscillogram of the signal x(t) and allows the analysis of this signal in the time domain.
The projection of the time-frequency representation on the plane (f , A) represents the ideal
spectrum of x(t) and permits us to analyze the signal x(t) in the frequency domain, while
the projection on the plane (f , t) represents the instantaneous frequency of x(t) and allows
the analysis of x(t) in the modulation domain.



1.2. Time-frequency Representations 11

1.2.1 The E�ective Duration and E�ective Bandwidth

In [IN98] it is highlighted, based on the duality of the Fourier transform, that signals
perfectly localized in time have an unlimited bandwidth, meaning that they are not localized
in frequency. As well, band limited signals have an in�nite duration. Therefore, to measure
these quantities two concepts are used: the e�ective duration, σt, and the e�ective frequency
band σω. A measure of the time-frequency localization of a given signal can be obtained by
the product σ2

ω · σ2
t , [OI09].

Heisenberg uncertainty principle states that the following inequality is true:

σ2
t · σ2

ω ≥
π

2
. (1.6)

The shorter is the e�ective duration of a signal, the wider is its e�ective frequency band.
In the case of the WT, both time and frequency localizations depend on the scale factor

s, [IN98]. The CWT can be stated as a scalar product for every value of the scale factor s :

Wx(s, t) = 〈x(τ), ψs(τ − t)〉, ψs(τ) =
√
sτ · ψ(sτ). (1.7)

If ψ(τ) ∈ <, we will have:

Wx(u, s) = x(u) ∗ ψ̆s(u), ψ̆s(t) = ψs(−t). (1.8)

Therefore, for every s>0 the wavelet transform of a signal x (t) represents the response
of a linear time invariant system at x (t), having the impulse response ψ̆s(t). The system has
the frequency response:

F{ψ̆s(t)}(ω) = F{ψs(t)}(−ω) = F{
√
sψ(−st)}(ω) =

1√
s
F{ψ(t)}

(
−ω
s

)
. (1.9)

So, the temporal "window" ψs(t) is "responsible" for the temporal localization of the
signal x (t), while the frequency "window" F{ψs(t)}(−ω

s
) is "responsible" for the localization

in frequency, at the scale s.
The e�ective duration and the e�ective bandwidth are:

sσ
2
t =

tσ
2

s2
and sσ

2
ω = s2 ·ω σ2, (1.10)

where tσ and ωσ represent the duration of the temporal "window", respective the bandwidth
of the frequency "window" associated to the mother wavelets. See [IN98] for more theoretical
details.

It is noticed that the time localization is getting worse with the increasing of the factor
s, while frequency localization improves with the increasing of s.

Also,

sσ
2
t · sσ2

ω = tσ
2
ω · σ2. (1.11)
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Regardless of the value of s, the time-frequency localization determined by ψs(τ) is iden-
tical with the one realized by the generating "window" ψ(t) .

In [OI09] is stated that the Haar functions (de�ned in equation (1.24) and represented
in Figure 1.9 c) have good time localization, but they have an in�nite e�ective bandwidth,
meaning that they are not localized in frequency. Contrary, cardinal sinus functions have
good frequency localization, but they have an in�nite duration. These two examples repre-
sent extreme cases, but between them there are mother wavelets (for example the elements of
the Daubechies family) for which the product gives �nite values. These functions have poorer
time localization than Haar functions and poorer frequency localization than the cardinal
sinus, but they provide a better time-frequency "compromise" than Haar or cardinal sinus
functions. Some conclusions can be drawn from [OI09]: the e�ective duration of Daubechies
wavelets functions is stronger in�uenced by the number of vanishing moments (we will de�ne
this term in Section 1.6), than their e�ective bandwidth, meaning that it increases mono-
tonically with the number of vanishing moments (an opposite evolution is observed for the
e�ective bandwidth) and the time-frequency localization of wavelets from the Daubechies
family monotonically increases with the number of vanishing moments.

1.2.2 Time-frequency Resolution Cell

We will present in the following a comparison between Fourier Series and the CWT
in terms of time-frequency representations. Fourier Series, have a very good frequency lo-
calization but they have not a localization in time. Figure 1.5 presents the time-frequency
localization of Fourier Series.

Figure 1.5: Time-frequency localization of the Fourier Series.

All the discrete frequencies which correspond to the harmonics of a periodic signal are
perfectly localized but there is no time localization. All the harmonics already mentioned
have in�nite durations. The CWT, on the other hand, has a good frequency localization and
poor time localization for low-frequencies, and poor frequency localization and good time
localization for high-frequencies, as it can be seen in Figure 1.6.
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Figure 1.6: Time-frequency localization of the CWT.

1.3 Theoretical Aspects of Wavelet Transform

There are two main types of wavelet transforms - continuous and discrete.

1.3.1 Continuous Wavelet Transform

Any oscillating function with zero mean can be a mother wavelet. The wavelet transform
of f ∈ L2(<) at time u and scale s, (1.6), is a convolution of the mother wavelet function
ψ ∈ L2(<) with the function f ∈ L2(<) :

Wf(u, s) =

∫ ∞
−∞

f(t)
1√
(s)

ψ∗(
t− u
s

)dt = f ∗ ψ̄s(u). (1.12)

By applying Parseval formula, we can also write (1.12) as:

Wf(u, s) =

∫ ∞
−∞

f(t)ψ∗u,s(t)dt =
1

2π

∫ ∞
−∞

f̂(ω)ψ̂∗u,s(ω)dω. (1.13)

The wavelet coe�cients, Wf (u,s), depend on the signal f(t) and its spectrum f̂(ω) in the
time-frequency region where the energy of ψ∗u,s and ψ̂

∗
u,s is concentrated. Since it has a zero

average, a wavelet coe�cient Wf (u,s) measures the variation of f in the neighborhood of u,
whose size is proportional to s.

The wavelet transform maps a raw data (observation of an underlying signal) into a
collection of coe�cients which provide the information on the behavior of the signal at
certain point, during a certain time interval around that point. The coe�cients tell us what
the signal is doing and at what time. More precisely, it measures the change of the local
average at a speci�c scale, around a speci�c moment.

The translation parameter u relates to the location of the wavelet function as it is shifted
along the signal, while the scale parameter s is de�ned as the inverse of frequency.
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The main disadvantage of the CWT is that it is computed for a large number of values
both for the scale and for the translation, so it is a very redundant transform. Therefore, a
discretization of the scale and translation variables was introduced.

1.3.2 Discrete Wavelet Transform

The Discrete Wavelet Transform (DWT) is obtained by the discretization of the CWT in
the time-frequency plane [Fla93] and is used to decompose discrete time signals. The result
obtained at each decomposition level is composed by two types of coe�cients: approximation
coe�cients and detail coe�cients. The approximation coe�cients are obtained by low-
pass �ltering the input sequence, followed by down-sampling. The detail coe�cients are
obtained by high-pass �ltering the input sequence followed by down-sampling. The sequence
of approximation coe�cients constitutes the input for the next iteration. Each decomposition
level corresponds to a speci�ed resolution. The resolution decreases with the increasing of
the number of decomposition levels. The DWT is invertible. Its inverse is named Inverse
DWT (IDWT). At each resolution level, the approximation and the detail sequences are
needed for the reconstruction of the approximation signal from the previous resolution level.

The Discrete Wavelet Transform has two features: the wavelet mother ψ and the number
of decomposition levels. Discrete wavelets can be scaled and translated in discrete steps and
a wavelet representation is the following:

ψj,n(t) =
1√
2j
ψ

(
t− 2jn

2j

)
, (1.14)

where j is the scale factor and n is the translation index.
Classical DWT is not shift invariant meaning that the DWT of a translated version of a

signal is not the same as the same translation of the DWT of the original signal. In order
to achieve shift-invariance, several wavelet transforms have been proposed. One of them is
presented in the following.

The Stationary Wavelet Transform (SWT) overcomes the absence of translation invari-
ance of the DWT. The SWT, also known as the Undecimated Discrete Wavelet Transform
(UDWT) is a time-redundant version of the standard DWT [She92].

Unlike the DWT which down-samples the approximation coe�cients and detail coe�-
cients at each decomposition level [Mal99], in the case of SWT no down-sampling is per-
formed. This means that the approximation coe�cients and the detail coe�cients at each
level have the same length as the original signal. This determines an increased number of
coe�cients at each scale and more accurate localization of signal features. Instead, the �lters
are up-sampled at each level.

The SWT has the translation-invariance, or shift-invariance, property. Thus, the SWT
gives larger amount of information about the transformed signal as compared to the DWT.
Larger amount of information is especially important when statistical approaches are used
for analyzing the wavelet coe�cients. The shift-invariant property is important in feature-
extraction applications, denoising and detection.
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The SWT can be implemented using the "à trous" algorithm, which will be detailed in
a following section.

1.4 Multiresolution Analysis

The multiresolution analysis (MRA) was introduced in 1988 by Stephane Mallat and
Yves Meyer [Mal99] and uses the wavelet transform to decompose a data series in a cascade
from the smallest scales to the largest ones. Adapting the signal resolution allows one to
process only the relevant details for a particular task. The MRA is a method for analyzing
a signal x(t), that takes into account its representation at multiple time resolutions.

When the original signal x(t) is involved, the maximal resolution is exploited. When a
variant of the original signal (for example the signal x(2t)) is used, then a poorer resolution
is exploited. Combining few analysis realized at di�erent resolutions, a MRA is obtained.

The motivation of MRA is to use a sequence of embedded subspaces to approximate
L2(<), allowing the selection of a proper subspace for a speci�c application task, to get a
balance between accuracy and e�ciency.

Mathematically, MRA represents a sequence of closed subspaces Vj, j ∈ Z which approx-
imate L2(<) and satisfy the following relations, [Mor97]:

MR1 : ...V−2 ⊂ V−1 ⊂ V0 ⊂ V1 ⊂ V2... (1.15)

MR2 :
⋃

j∈Z
Vj = L2(<), (1.16)

meaning that L2(<) space is the closure of the union of all subspaces Vj, j ∈ Z.

MR3 :
⋂
j∈Z

Vj = {0}, (1.17)

that is, the intersection of all Vj contains a single element, the constant function equal with
0.

The multiresolution is re�ected by the additional requirements:

MR4 : f ∈ Vj ←→ f(2t) ∈ Vj+1, j ∈ Z, (1.18)

f ∈ V0 ←→ f(t− k) ∈ V0. (1.19)

There exists a function, φ(t), such that its translates form an Riesz basis for V0. Using
the scale invariance condition, we see that {φ(2t− k)} is an Riesz basis for V1.

Similarly, if we de�ne φjk(t) = 2j/2φ(2jt− k), then φjk(t) forms a Riesz basis for Vj. The
function φ, which generates all the basis functions for all the spaces Vj, is called the scaling
function of the multi-resolution analysis. Any Riesz basis [Mal99] can be transformed into an
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orthonormal basis using the Gram-Schmidt orthogonalization procedure [Wik]. Therefore,
an orthonormal scaling functions basis corresponds to each scaling functions basis mentioned
above.

Another important property of MRA is that, considering the subspaceWj, withWj ⊥ Vj:

MR5 : Vj+1 = Vj
⊕

Wj. (1.20)

The operator in the right hand side of equation (1.20) represents the direct sum of Hilbert
spaces and the sequence of Hilbert spaces Wj.

A direct application of multi-resolution analysis is the fast discrete wavelet transform
algorithm used to implement the DWT [Mal99]. The fast discrete wavelet transform decom-
poses signals into low-pass and high-pass components sub-sampled by 2, while the inverse
transform performs the reconstruction. Each mother wavelets ψ has a corresponding scaling
function φ. The subspaces Vj are generated using bases obtained by the translations of a
scaled variant of a scaling function. The subspaces Wj are generated using bases obtained
by translations of a scaled version of the corresponding mother wavelets. In this case the
subspaces Wj from (1.20) form an orthogonal decomposition of L2(<).

1.4.1 The Algorithm of Mallat

Generally, the MRAs are implemented based on the algorithm of Mallat [Mal99]. It
corresponds to the computation of the DWT, represented in Figure 1.7:

Figure 1.7: A three order Mallat decomposition tree.

The signal x[n] is passed through a series of high pass �lters with the impulse response
(gd), to analyze the high frequencies and it is passed through a series of low pass �lters with
the impulse response (hd) to analyze the low frequencies. At each level, the high-pass �lter
produces after down sampling, the detail information dk (k = 1, 2, 3 in this example), while
the low-pass �lter associated with scaling function produces, after down-sampling, coarse
approximations, ak (k = 1, 2, 3). The �ltering operations determine the signal's resolution,
meaning the quantity of detail information in the signal, while the scale is determined by
up-sampling and sub-sampling operations.

There is a correspondence between the concepts of MRA and orthogonal decomposition
mentioned above, and the diagram depicted in Figure 1.7. If x[n] represents the decom-
position coe�cients of a signal x(t) in the space V0, then the sequence a1[n] represents the
decomposition coe�cients of x(2t) in V1 and the sequence d1[n] represents the decomposition
coe�cients in W1 and so on.
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The reconstruction operation is the reverse process of decomposition. The IDWT of
the original signal is obtained by concatenating all the coe�cients aK and dk, k = 1...K,
starting from the last level of decomposition K. Due to successive sub-sampling by 2, the
signal length must be a power of 2, or at least a multiple of power of 2 and it determines the
number of levels that the signal can be decomposed into. The IDWT is implemented with the
aid of up-samplers and �nite impulse response (FIR) �lters. The sequence of approximation
coe�cients corresponding to a certain decomposition level is reconstructed starting from the
sequences of approximation and detail coe�cients corresponding to the next decomposition
level. These approximation coe�cients are up-sampled and the result is �ltered with a low-
pass �lter. The detail coe�cients are up-sampled and the result is �ltered with a high-pass
�lter. The two new results are then added. The low-pass and high-pass �lters used in the
IDWT can be constructed starting with the corresponding �lters used for the implementation
of the DWT.

The disadvantage of the Mallat's algorithm is that the length of the coe�cient sequences
decreases with the increasing of the iteration index due to the decimators utilization. This
fact produces translation variance, but the DWT is not redundant.

1.4.2 The Algorithm of Shensa

Another way to implement a MRA is the use of the algorithm "à trous" proposed by
Shensa [She92] which corresponds to the computation of the Stationary Wavelet Transform
(SWT). The decomposition tree is represented in Figure 1.8.

Figure 1.8: System for the computation of the SWT (3 levels).

In this case the use of decimators is avoided but at each iteration di�erent low-pass
(hd1 , hd2 , and hd3) and high-pass �lters (gd1 , gd2 and gd3) are used. Each level �lters are
up-sampled versions of the previous ones.

So the di�erences between SWT and DWT are that the signal is never down-sampled,
while the �lters are up-sampled at each level in the case of SWT. The SWT is an inherently
redundant scheme as each set of coe�cients contains the same number of samples as the
input - so for a decomposition of N levels there is a redundancy of 2N. Because no down-
sampling is performed, a1 and d1 are of length N instead of N /2 as in the DWT case. At
the next level of the SWT, a1 is split into two using modi�ed �lters obtained by dyadically
up-sampling the �lters from the previous level. This process is continued recursively. The
SWT is invertible and its inverse is named the Inverse SWT (ISWT). The implementation of
the ISWT supposes to apply the inverse of the operations applied for the implementation of
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the SWT in inverse order. The SWT is translation invariant because all the �lters composing
the scheme in Figure 1.8 are linear time invariant systems.

1.5 Wavelet Families

There are several types of wavelet families whose qualities vary according to several
criteria such as: the support of the mother wavelets, the symmetry, the number of vanishing
moments, the regularity. These are associated with two properties that allow fast algorithm
and space-saving coding: the existence of a scaling function and the orthogonality or the
biorthogonality of the resulting analysis. They may also be associated with these less im-
portant properties: the existence of an explicit expression, the ease of tabulating, or the
familiarity with use. A possible classi�cation of wavelets is into two classes: orthogonal and
biorthogonal.

We have already mentioned that the set of functions obtained by translations and dila-
tions of orthogonal mother wavelets forms an orthogonal basis and that the set of functions
obtained by translations and dilations of biorthogonal mother wavelets forms a Riesz basis.
Further details about the biorthogonal wavelets will be given in this section.

There is a variety of mother wavelets such as Daubechies, Symmlet, Haar or Coi�et,
which generate orthogonal wavelet bases. An example of several mother wavelets waveforms,
generated in Matlabr, is presented in Figure 1.9.

Figure 1.9: Several di�erent mother wavelets: a) Gaussian wave; b) Mexican hat; c) Haar;
d) Morlet.
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The Haar mother wavelets is used for the computation of the Discrete Wavelet Transform,
DiWT , the other three mother wavelets showed in Figure 1.9 are used for the computation
of the CWT.

Since the mother wavelet produces all wavelet functions used in the transformation
through translation and scaling, it determines the characteristics of the resulting DiWT .
Therefore, the details of the particular application should be taken into account and the
appropriate mother wavelets should be chosen in order to use the DiWT e�ectively.

1.5.1 Vanishing Moments

The number of vanishing moments (or zero moments) is used to measure the local
regularity of a signal [Mal99]. According to [Dau92] vanishing moments are a necessary
condition for the smoothness of the wavelet function.

A wavelet ψ(t) has p vanishing moments if:∫ ∞
−∞

tkψ(t)dt = 0, (1.21)

with 0 ≤ k < p.

Substituting the mother wavelets in the integral from the left hand side of equation (1.21)
with the probability density function, the integral becomes the moment of order k of the
considered random variable. So, the equation (1.21) can be read as: the moment of order k of
the random variable vanishes. This explains why p is named number of vanishing moments.
The local regularity of mother wavelets is important because it can be chosen equal with the
local regularity of the signal currently analyzed. This is an optimization technique for the
procedure of selection of the mother wavelets. There are some features of mother wavelets
which depend on its number of vanishing moments as the length of its support or its time,
frequency or time-frequency localizations. The length of the support of a mother wavelets
increases with the increasing of the number of vanishing moments. The time localization
and the time-frequency localization of a mother wavelets decrease with the increasing of the
number of vanishing moments. The frequency localization of a mother wavelets increases
with the increasing of the number of vanishing moments.

Theorem 1 [Mal99] associates the number of vanishing moments of φ with the number of
vanishing derivatives of ψ̂(ω) at ω = 0, respective of ĥd(ω) at ω = π.

Theorem 1

Let ψ and φ be a wavelet and the corresponding scaling function that generates an or-
thogonal basis. Suppose that |ψ(t)| = O((1 + t2)−p/2−1) and |φ(t)| = O((1 + t2)−p/2−1). The
following four statements are equivalent:

1. The wavelet ψ has p vanishing moments;

2. ψ̂(ω) and its �rst p-1 derivatives are 0 at ω = 0;
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3. ĥd(ω) and its �rst p-1 derivatives are 0 at ω = π;

4. for any 0 ≤ k < p,

qk(t) =
∞∑

n=−∞

nkφ(t− n) (1.22)

is a polynomial of degree k.

In this theorem ĥd represents the Fourier transform of the conjugate mirror �lter in
Figure 1.7, while ψ̂ represents the Fourier transform of ψ. A conjugate mirror �lter represents
a discrete �lter that characterizes any scaling function, φ.

The proof of the theorem is presented in [Mal99]. The Theorem 1 highlights the impor-
tance of the selection of the number of vanishing moments of mother wavelets. Condition
2 refers to the opportunity of the use of wavelets in spectral analysis. There are signals, as
for example the long range dependent random signals (which will be studied in Chapter 4),
whose spectral analysis is very di�cult at low frequencies, because their Fourier transform
tends to in�nity when the frequency tends to zero. This spectral analysis can be successfully
done with the aid of wavelets having an appropriate number of vanishing moments. Condi-
tion 3 in Theorem 1 gives indications about the construction of the quadrature mirror �lter
associated with the mother wavelets. The construction of this �lter is related to the length
of the support of mother wavelets. The mother wavelet with the shortest support is the Haar
mother wavelets. It has only one vanishing moment. Finally, Condition 4 speci�es the de-
gree of the polynomial which can be represented by linear combination of the corresponding
scaling function. This degree depends on the number of vanishing moments as well.

1.5.2 Orthogonal Wavelet Families

In the case of orthogonal wavelets, vanishing moments, support, regularity and symme-
try of the wavelet and scaling function are determined by the scaling �lter. A scaling �lter
is a low-pass �nite impulse response (FIR) �lter of length 2N with the sum of coe�cients of
the impulse response equal with 1.

The coe�cients of digital �lters in Figures 1.7 and 1.8 are real numbers, the �lters are of
the same length and are not symmetric. The two �lters h and g from a decomposition level
are alternating �ip of each other. This means that:

g[n] = (−1)nh[M − n], (1.23)

where M is an odd integer.
The alternating �ip automatically gives double-shift orthogonality between the low-pass

and high-pass �lters. Perfect reconstruction is possible with alternating �ip.
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Orthogonal scaling functions and wavelets could have a high number of vanishing mo-
ments. This property is useful in many signal and image processing applications. They have
regular structure which leads to easy implementation and scalable architecture.

An orthogonal wavelet has p vanishing moments if and only if its scaling function can
generate polynomials of degree smaller than or equal to p.

If we refer to symmetry, it is well known that there is no symmetric compactly supported
orthogonal mother wavelets, besides the wavelet of Haar.

Daubechies Wavelets

Daubechies wavelet family is named in the honor of its inventor, the Belgian physicist
and mathematician Ingrid Daubechies and is one of the most widely used wavelet family.
They represent a collection of orthogonal mother wavelets with compact support, characte-
rized by a maximal number of vanishing moments for some given length of the support.

Corresponding to each mother wavelets from this class, there is a scaling function (also
called father wavelet) which generates an orthogonal MRA.

The Daubechies mother wavelets are not symmetric. A selection of Daubechies wavelets
(left) and their scaling functions (right) is presented in Figure 1.10.

Figure 1.10: A selection of Daubechies wavelets (left) and their scaling functions (right):
db4, db6 and db10.
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The elements of the Daubechies' family mostly used in practice are db1 - db20. The
index refers to the number of vanishing moments. The number of vanishing moments is
equal to half of the length of the digital �lters length, N , in the case of Daubechies family of
mother wavelets. For example, db1 (the Haar wavelet) has one vanishing moment, db2 has
two vanishing moments and so on.

Haar wavelet (Daubechies wavelet of order 1) (represented in Figure 1.9, c) was the �rst
mother wavelets proposed by Alfred Haar in 1909 [Haa10] and has the shortest support
among all orthogonal wavelets. The Haar mother wavelets generates, by translations and
dilations, orthogonal wavelets. It is the single symmetric orthogonal mother wavelets. It
is not well adapted for approximating smooth functions because it has only one vanishing
moment. Only Haar wavelets has an explicit expression, all other orders Daubechies wavelets
are represented by wavelet coe�cients and dilation equation.

Haar mother wavelet function ψ(t) has the expression:

ψ(t) =


1, 0 ≤ t < 1/2
−1, 1/2 ≤ t < 1
0, otherwise

(1.24)

The advantages of Haar wavelet transform are the following: it is conceptually simple and
fast (the impulse response of its associated quadrature mirror �lter has only two coe�cients
and the number of operations required by the implementation of the Haar transform is of
the order of 2N , where N represents the number of the samples of the input signal), it is
memory e�cient, and it is a good choice to detect time localized information. Because of
these advantages we will use it with predilection in Chapters 3 and 4.

Symmlets

Daubechies wavelets are quite asymmetric. To improve symmetry Daubechies proposed
Symmlets as a modi�cation to her original wavelets [Dau92].

Symmlets (symN , where N is the order), also known as Daubechies least asymmetric
mother wavelets, are compact supported, orthogonal, continuous, but only nearly symmetric
mother wavelets. The purpose was to create wavelets with the same size and same number
of vanishing moments as Daubechies, but with near linear phase �lters.

Symmlets have the highest number of vanishing moments for a given support width. Their
construction is very similar to the construction of Daubechies wavelets, but the symmetry
of Symmlets is stronger than the symmetry of Daubechies mother wavelets. Symmlets have
N/2 vanishing moments, support length N − 1 and �lter length N .

Some examples of Symmlets (sym6 and sym8) and their associated scaling functions are
presented in Figure 1.11.



1.5. Wavelet Families 23

Figure 1.11: Symmlets (left) and their associated scaling functions (right): sym6 and sym8.

Coi�ets

Coifman wavelets or "Coi�ets" (coifN , where N is the order) are discrete wavelets
designed by Ingrid Daubechies [Dau92] and named in the honor of Ronald Coifman (another
researcher in the �eld of wavelets theory). Ronald Coifman suggested the construction of
a orthonormal wavelets family with the same number of vanishing moments as the scaling
functions they came from.

Coi�ets are compactly supported wavelets and were designed to be more symmetrical than
Daubechies mother wavelets to have a support of size N−1 and �lter length N . The wavelet
has N/3 vanishing moments, while the scaling function has N/3−1 vanishing moments. The
number next to the wavelet's name represents the number of vanishing moments, related to
the number of wavelet coe�cients.

Two examples of Coi�ets (coif3 and coif5) and their associated scaling functions are shown
in Figure 1.12.
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Figure 1.12: Coi�ets (left) and their associated scaling functions (right): coif3, coif5.

1.5.3 Biorthogonal and Reverse Biorthogonal Wavelets

As already said the biorthogonal wavelets are elements of Riesz bases generating MRAs.
In opposition with the orthogonal scaling functions which generate a single MRA, the
biorthogonal scaling functions are associated in pairs which generate a pair of MRAs. The
�rst element of the pair of biorthogonal scaling functions generates a MRA used for analysing
the input signal of the associated forward WT. The second element generates a MRA used
for the synthesis associated with the inverse WT. The elements of each MRA are orthogonal
on the elements of a corresponding orthogonal decomposition. So, there are two orthogonal
correspondences. They form a biorthogonal correspondence. More details about the concept
of biorthogonality will be given in the following.

Biorthogonal families include Biorthogonal and Reverse Biorthogonal wavelets. Genera-
lly, the biorthogonal scaling functions are selected from the family of spline functions. The
Haar scaling function is a spline function of order zero. The spline function of �rst order is
obtained by convolving the spline function of order zero with her self. The nth order spline
function is obtained by convolving the spline function of order n−1 with the spline function
of order 0. Both families of wavelets, Biorthogonal and Reverse Biorthogonal, are composed
by compactly supported wavelets associated with biorthogonal spline scaling functions im-
plemented with FIR �lters. Both symmetry and exact reconstruction are possible with FIR
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�lters, [Mal99].
Biorthogonal wavelets are families of compactly supported symmetric wavelets. Their

construction can be made using an in�nite cascade of perfect reconstruction �lters which
produce two scaling functions, φ and φ̃ and two wavelets, ψ and ψ̃. For any j ∈ Z, φj,n and
˜φj,n with n ∈ Z, generate bases of Vj and Ṽj and the corresponding wavelets ψj,n and ˜ψj,n,
with n ∈ Z, generate bases of two detail spaces Wj and W̃j such that:

Vj+1 = Vj
⊕

Wj, Ṽj+1 = Ṽj
⊕

W̃j. (1.25)

In Figure 1.13 is shown an example of biorthogonal wavelets with their associated scaling
functions, for analysis and synthesis.

Figure 1.13: Biorthogonal wavelets, analysis and synthesis (right) and their associated scaling
functions (left).

The digital �lters associated with biorthogonal mother wavelets exhibit the property of
linear phase which ensures the symmetry of the mother wavelets. Instead of a single ortho-
gonal wavelet, in the case of biorthogonal wavelet transforms two wavelets are used (one for
decomposition and the other for reconstruction), as it can be seen in Figure 1.13. Desig-
ning biorthogonal wavelets allows additional degrees of freedom as compared to orthogonal
wavelets, for example the possibility of constructing symmetric wavelet functions, [Mal99].
In the case of the biorthogonal wavelet �lters, the low pass and the high pass �lters do not
have the same length. The low pass �lter is always symmetric, while the high pass �lter could
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be either symmetric or asymmetric. The coe�cients of the �lters are either real numbers or
integers. For perfect reconstruction, biorthogonal �lter bank has all �lters of odd length or
even length. The two analysis �lters can be symmetric with odd length or one symmetric
and the other asymmetric with even length. Also, the two sets of analysis and synthesis
�lters must be dual. The linear phase biorthogonal �lters are the most popular �lters for
data compression applications.

The biorthogonal wavelets are denoted as biorNr.Nd, where Nr is the order of the
wavelet or the scaling functions used for reconstruction and Nd is the order of the functions
used for decomposition. The reconstruction and decomposition functions have the support
width equal to 2Nr + 1 and 2Nd + 1, respectively. The length of the associated �lters is
max(2Nr, 2Nd) + 2.

Reverse biorthogonal (rbioNr.Nd, where Nr and Nd are the orders for the reconstruction
and decomposition respectively) is obtained from biorthogonal wavelet pairs. This type of
wavelets are compactly supported biorthogonal spline wavelets for which symmetry and exact
reconstruction are possible with FIR �lters. A comparison between the implementation of
the DiWT based on orthogonal and biorthogonal wavelets is presented in Figure 1.14.

Figure 1.14: A comparison between DiWT implementations based on orthogonal wavelet
functions (a)) and biorthogonal wavelet functions( b)).
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1.6 Applications of Wavelet Transforms

Wavelet transforms are now used in many applications, replacing the traditional Fourier
Transform. Wavelets are extensively used in Signal and Image Processing [Fir10], Commu-
nications [Olt10], Computer Graphics [CS05], Finance [GSW01], Medicine [Olk11], Biology
[Olk11], Geology [Kol11] and many other �elds.

Wavelets have been heavily utilized to �nd the edges in digital images, to digitally com-
press �ngerprints, in the modeling of distant galaxies or in denoising noisy data. Musicolo-
gists used wavelets to reconstruct damaged recordings, [BF09].

Wavelet analysis is proving to be a very powerful tool for characterizing self-similar
behavior, over a wide range of time scales, [Gra95].

1.7 Conclusions

As it was shown in sub-sections 1.2.4, where the wavelet transform was compared with
the Fourier transform and 1.4.1, where the CWT was introduced, the wavelet transforms are
important tools for analysis and processing of non-stationary signals. The scaling functions
associated to wavelets allow the implementation of MRAs as it was shown in the sub-section
1.5. This is an important concept because it allows the identi�cation of the most appropriate
resolution for the representation of a given signal in a speci�ed application. The details of
a signal which does not carry relevant information for the considered application can be
neglected on the basis of MRA, speeding the implementation of the application. We will
use the MRA concept in Chapter 3, for a tra�c forecasting application. There are two
algorithms for the implementation of a MRA, the algorithm of Mallat associated with the
DWT, presented in sub-section 1.5.1 and the algorithm of Shensa associated with the SWT,
presented in sub-section 1.5.2. We will use both algorithms in the following chapters of
this thesis. The problem of WiMAX tra�c forecasting is solved in Chapter 3 with the aid
of the SWT. The problem of the long range dependence of the WiMAX tra�c detection
is solved in Chapter 4 with the aid of DWT. In both cases the use of wavelets speed-up
considerably the application. The most used families of mother wavelets were presented
in section 1.6. One of the goals of the present thesis is to �nd out the most appropriate
mother wavelets for tra�c forecasting and long range dependence detection. This purpose
will be achieved by brute force search. Each element of the orthogonal and biorthogonal
wavelet families presented in section 1.6 will be tested in both applications and the mother
wavelets which will optimize the performance of each application will be retained. One of the
most important parameters for the selection of mother wavelets is its number of vanishing
moments, introduced in sub-section 1.6.1. Its importance will be highlighted in the future
sections of this thesis in relation with the in�uence of non-stationarity of a random process on
the detection of its long range dependence degree. Wavelets add literally another dimension
to Digital Signal Processing. Instead of processing a signal in the time/frequency domain, we
can simultaneously process the signal in time and frequency (scale). From the time-frequency
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methods currently available for high resolution decomposition in the time-frequency plane
(including STFT or Wigner-Ville transform), the wavelet transform appeared to be the
favorite tool for researchers due to its high �exibility and adaptability to a large set of
applications. Another key advantage of wavelet transform is the variety of wavelet functions
available, that allows us to choose the most appropriate for the signal under investigation.

Wavelet transform analysis has now been applied to a wide variety of applications in-
cluding time series prediction. Generally, the prediction is done with the aid of statistical
methods or with the aid of neural networks. Both types of prediction are speed-up if they are
applied in the wavelets domain. This increasing of speed is due to the sparsity of the WTs.
There are only few wavelet coe�cients with big values, the majority of the wavelet coe�-
cients have small values and can be neglected without loosing a large amount of information.
We will refer in Chapter 3 to wavelet based prediction method for WiMAX tra�c.

The performance of any signal processing method based on wavelets can be improved by
the good selection of the wavelet transform used and of its features. For this reason we will
investigate in section 3.4 the process of mother wavelets selection for the proposed tra�c
forecasting procedure, based on the quantities de�ned in section 1.3.1. We will also refer
in Chapter 4 to a LRD detection method based on wavelets. Di�erent wavelet transforms
are used in the applications considered in Chapter 3 and Chapter 4. The reasons for these
choices are indicated in the corresponding chapters.



Chapter 2

Statistical Tools

This chapter provides an introduction to some basic concepts in statistics and time
series analysis. The aim of this section is to shortly present the theoretical bases of the
statistical methods which will be used in the following two chapters of the thesis. The tra�c
forecasting methodology which represents the subject of Chapter 3 is based on an ARIMA
model applied in the wavelets domain. The �rst goal of the present section is to de�ne
the ARIMA model, to show its utilization in estimation applications and to introduce some
quality measures for this prediction. The long range dependence of the tra�c is detected in
Chapter 4 with the aid of Hurst parameter estimators. The description of those estimators
represents the second goal of the present section. Let's present for the beginning some basic
concepts in statistics.

2.1 Simple Statistical Measures

In the following we will de�ne some statistical measures:

De�nition 1. Mean (µ): the mean of a random variable X can be de�ned as:

µ = E[X], (2.1)

where E represents the statistical mean operator.

De�nition 2. Variance (σ2 = V AR(X)): the variance of a random variable X is given by:

σ2 = V AR(X) = E[(X − µ)2]. (2.2)

De�nition 3. Standard deviation (σ): the standard deviation of a random variable is the
square root of the variance.

De�nition 4. Autocovariance (γ): the autocovariance of a time-series Xt can be de�ned as:

γ(i, j) = E[(Xi − µ)(Xj − µ)]. (2.3)

29
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De�nition 5. Autocorrelation function (ACF): the autocorrelation function of a time series
Xt is given by:

ρ(i, j) =
γ(i, j)

σ2
=
E[(Xi − µ)(Xj − µ)]

σ2
. (2.4)

De�nition 6. Partial autocorrelation function (PACF): the partial autocorrelation function
at the lag k is the autocorrelation between Xt and Xt−k that is not explained by all lower-order
lags (1 to k-1, inclusive).

φkk = CORR(Xt − P (Xt|Xt+1 + ...+Xt+k−1), Xt+k − P (Xt+k|Xt+1 + ...+Xt+k−1)). (2.5)

where P (Xt|Xt+1 + ...+Xt+k−1) is the best linear projection of Xt over Xt+1 + ...+Xt+k−1,
[FHH08].

The PACF will vary between -1 and +1, with values near 1 indicating stronger correla-
tion. PACF is a commonly used tool for model identi�cation in Box-Jenkins methodology,
identifying the order p of an AR model: the PACF for a AR(p) is nonzero if k ≤ p and zero
for k > p, [BJR94].

De�nition 7. Stationary process: A wide-sense stationary process Xt is a stochastic process
characterized by the fact that its probability distribution, mean and variance do not change
over time or position.

An example of stationary process is the White Gaussian Noise (WGN). A Gaussian
process is a stochastic process whose realizations consist in random values associated with
every point in a range of time such that each radom variable has a normal distribution:

PG(x) =
1√

2πσG
e
− (x−µG)2

2σ2
G , (2.6)

where parameter µG is the mean and σ2
G is the variance. The distribution with µG = 0 and

σG = 1 is called standard normal.
A WGN process is a Gaussian process which has the following covariance function:

E {WGN(t)WGN(s)} = σ2
Gδ(t− s). (2.7)

An example of non-stationary process is the fractional Brownian motion (fBm) [Cle04].
It is a continuous-time Gaussian process BH(t) on [0,T], which starts at zero, has expectation
zero for all t ∈ [0, T ] and has the following covariance function:

E {BH(t)BH(s)} =
1

2
(|t|2H + |s|2H − |t− s|2H), (2.8)

where H is a real number in the interval (0,1), called Hurst parameter [Cle04]. The values
of H determines what kind of process the fBm is:
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� if H = 1
2
the process is in fact a Brownian motion;

� if H > 1
2
increments of the process are positively correlated;

� if H < 1
2
increments of the process are negatively correlated.

The increment process, X(t) = BH(t+ 1)−BH(t), is known as fractional Gaussian noise
(fGn). The increment process is stationary:

BH(t)−BH(s) ∼ BH(t− s). (2.9)

2.2 Basic Stochastic Model in Time-series Analysis

Autoregressive (AR) Process of Order p

An Autoregressive model of order p (AR(p)) is a weighted linear sum of the past p
values [Cha01] and it is de�ned by the following equation:

Xt = Zt + φ1Xt−1 + φ2Xt−2 + ...+ φpXt−p, (2.10)

where Xt represent the time series which model must be established, φp(.) is a pth degree
polynomial and Zt is a white noise time series.

Moving Average (MA) Process of Order q

Moving average (MA) process of order q is a weighted linear sum of the past q random
shocks:

Xt = Zt + θ1Zt−1 + θ2Zt−2 + ...+ θqZt−q. (2.11)

where θq(.) is a qth degree polynomial and Zt is a white random process with constant
variance and zero mean [Cha01].

Autoregressive Moving Average Model (ARMA)

Given a time series of data Xt, the Autoregressive moving average model (ARMA) is a
tool for understanding and predicting future values in this series. The model consists of two
parts, an autoregressive (AR) part and a moving average (MA) part. The model is usually
then referred to as the ARMA(p,q) model where p is the order of the autoregressive part
and q is the order of the moving average part.

A time series Xt is an ARMA(p,q) process if Xt is stationary and if:

φ(B)Xt = θ(B)Zt, (2.12)

which can be expressed as:

φ1Xt−1 + φ2Xt−2 + ...+ φpXt−p = θ1Zt−1 + θ2Zt−2 + ...+ θqZt−q, (2.13)
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where φp(.) and θq(.) are p
th and qth degree polynomials, and B is the backward shift operator

(BjXt = Xt−j, BjZt = Zt−j , j = 0, ±1,...).
The ARMA model �tting procedure assumes the data to be stationary. If the time

series exhibits variations that violate the stationary assumption, then there are speci�c
approaches that could be used to render the time series stationary. As we will see in a
following sub-section a stationary time series is one whose statistical properties such as mean,
variance, autocorrelation, etc. are invariant in time. Most statistical forecasting methods are
based on the assumption that the time series can be rendered approximately stationary (i.e.,
"stationarized") through the use of mathematical transformations. A stationarized series is
relatively easy to predict: you simply predict that its statistical properties will be the same
in the future as they have been in the past! The predictions for the stationarized series
can then be "untransformed", by reversing whatever mathematical transformations were
previously used, to obtain predictions for the original series. Thus, �nding the sequence of
transformations needed to stationarize a time series often provides important clues in the
search for an appropriate forecasting model. One of the operations which can be used for the
stationarization of a time series is the di�erencing operation. The �rst di�erence of a time
series is the series of changes from one period to the next. If Y (t) denotes the value of the
time series Y at period t, then the �rst di�erence of Y at period t is equal to Y (t)−Y (t−1).
If the �rst di�erence of Y is stationary and also not autocorrelated, then Y is described by
a random walk model: each value is a random step away from the previous value. If the
�rst di�erence of Y is stationary but autocorrelated, then a more sophisticated forecasting
model such as exponential smoothing or ARIMA may be appropriate.

2.2.1 Autoregressive Integrated Moving Average Model (ARIMA)

Autoregressive integrated moving average (ARIMA) model is a generalization of an
ARMA model. In statistics and signal processing, ARIMA models, sometimes called Box-
Jenkins models after the iterative Box-Jenkins methodology usually applied to estimate
them, are usually modeled for time series data.

ARIMA models are �tted to time series data either to better understand the data or
to predict future points in the series. They are applied in some cases where data show
evidence of non-stationarity, when some initial di�erencing steps must be applied to remove
the non-stationarity.

The model is generally referred to as an ARIMA(p,d,q) model where p, d, and q are
integers greater than or equal to zero and refer to the order of the autoregressive, integration
(number of di�erencing steps needed to achieve stationarity), and moving average parts of
the model respectively.

φ(B)(1−B)dXt = θ(B)Zt. (2.14)

A generalization of standard ARIMA(p,d,q) processes is the Fractional ARIMA model
referred to as FARIMA(p,d,q) [MMS08]. The di�erence between ARIMA and FARIMA
consist in the degree of di�erencing d, which for FARIMA models takes real values.
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A time series Xt is a FARIMA(p,d,q) process if:

φ(B)(∆)dXt = θ(B)Zt, (2.15)

and −0.5 < d < 0.5.

2.2.2 Box-Jenkins Methodology

The Box-Jenkins methodology [BJR94] applies to ARMA or ARIMA models to �nd the
best �t of a time series to its past values, in order to make forecasts.

The original methodology uses an iterative three-stage modeling approach:

1. Model identi�cation and model selection:

� making sure that the time-series are stationary: Stationarity can be assessed from
a run sequence plot. The run sequence plot should show constant location and
scale. It can also be detected from an autocorrelation plot. Speci�cally, non-
stationarity is often indicated by an autocorrelation plot with very slow decay.

� identifying seasonality in the dependent series. Seasonality (or periodicity) can
usually be assessed from an autocorrelation plot, a seasonal sub-series plot, or a
spectral plot.

2. Parameters estimation used to arrive at coe�cients which best �t the selected ARIMA
model. Once stationarity and seasonality have been addressed, the next step is to
identify the order (i.e., the p and q) of the autoregressive and moving average parts.
The primary tools for doing this are the autocorrelation plot and the partial autocor-
relation plot. The sample autocorrelation plot and the sample partial autocorrelation
plot are compared to the theoretical behavior of these plots when the order is known.
Speci�cally, for an AR(1) process, the sample autocorrelation function should have an
exponentially decreasing appearance. However, higher-order AR processes are often
a mixture of exponentially decreasing and damped sinusoidal components. The auto-
correlation function of a MA(q) process becomes zero at lag q + 1 and greater, so we
examine the sample autocorrelation function to see where it essentially becomes zero.
For models with p > 0 and q > 0, the ACF and PACF are di�cult to recognize and
have less value in order selection than in the cases where p or q equals 0. For these
cases there are other selection criteria that will be discussed in the next sections.

3. Model checking by testing whether the estimated model conforms to the speci�cations
of a stationary univariate process. In particular, the residuals (elements of the time
series that have no signi�cation) should be as small as possible and should not follow
a model. If the estimation is inadequate, we have to return to step one and attempt
to build a better model.

Once the model has been selected, estimated and checked, the next step is to compute
forecasts.
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2.3 Parameter Estimation and Order Selection Criteria

The determination of an appropriate ARMA(p, q) model to represent an observed sta-
tionary time series involves the order p and q selection and estimation of the mean, the
coe�cients φp and θq, and the white noise variance σ2.

When p and q are known, good estimators of φ and θ can be found by imagining the
data to be observations of a stationary Gaussian time series and maximizing the likelihood
with respect to the parameters φp, θq and σ

2. The estimators obtained using this procedure
are known as maximum likelihood estimators.

2.3.1 Maximum Likelihood Estimation (MLE)

Maximum likelihood estimation (MLE) is the most popular method used for parameter
estimation in statistics. The aim of this method is to determine the parameters that maximize
the probability of observations. The likelihood function of data set represents the probability
of obtaining that particular data set given that the probability density is known. A detailed
theoretical approach regarding MLE is presented in [HT89].

In the following the problem of selecting appropriate values for the orders p and q will be
discussed. Several criteria have been proposed in the literature, since the problem of model
selection arises frequently in statistics, [BD02].

2.3.2 Final Prediction Error (FPE)

Developed by Akaike in 1969, FPE criterion is used to select the appropriate order of
an AR process to �t to a time series X1, ..., Xn. The most accurate model has the smallest
FPE. The FPE for an AR process of order p can be estimated according to the following
equation:

FPE = σ̂2 · n+ p

n− p
. (2.16)

where n is the number of samples.

2.3.3 Akaike information criterion (AIC)

AIC is a measure of the goodness of �t of an estimated statistical model. In fact, AIC
is the generalization of maximum likelihood principle. Given observations X1, ..., Xn of an
ARMA process the AIC statistic is de�ned as:

AIC = −2 · ln(L) + 2(p+ q + 1), (2.17)

where L is the likelihood function.
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The AICC is a bias-corrected version of the AIC, proposed by Hurvich, [HT89]. This
criterion is applied as follows: choose p, q, φp, and θq to minimize:

AICC = −2 · lnL+
2(p+ q + 1)n

n− p− q − 2
. (2.18)

where n is the number of samples.

2.3.4 Bayesian Information Criterion (BIC)

In the case of AICC and AIC statistics, for n → ∞, the factors 2(p + q + 1)n/(n-
p-q-2) respective 2(p + q + 1) are asymptotically equivalent. BIC is another criterion for
model selection, that attempts to correct the over�tting nature of the AIC, [HT89]. For a
zero-mean causal invertible ARMA(p, q) process, BIC is de�ned by the following equation:

BIC = (n−p−q) · ln
[

nσ̂2

n− p− q

]
+n ·(1+ ln

√
2π)+(p+q) · ln

[
(
∑n

t=1X
2
t − nσ̂2)

p+ q

]
, (2.19)

where σ̂2 is is the maximum likelihood estimator of σ2 (the white noise variance of the AR(p)
model).

2.4 Analysis of Variance

The Analysis of Variance (ANOVA) technique is a statistical method used to quantify
the amount of variability accounted by each term in a multiple linear regression model. It
can be used in the reduction of a multiple linear regression model process, identifying those
terms in the original model that explain the most signi�cant amount of variance.

We de�ne the sum squared error (SSE ):

SSE =
n∑
t=1

e(t)2, (2.20)

where e( t) represents the error of the model.
We denote the following sum with (SSX ):

SSX =
n∑
t=1

y(t)2, (2.21)

where y(t) is the observed response of the model.
The total sum of squares (SST ) is de�ned as the uncertainty that would be present if

one had to predict individual responses without any other information. The best one could
do is to predict each observation to be equal to the sample mean. So, we compute SST as:
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SST =
n∑
t=1

(
y(t)− y(t)

)2
, (2.22)

where y(t) represents the mean of y(t).
The ANOVAmethodology splits this variability into two parts. One component is accoun-

ted for by the model and it corresponds to the reduction in uncertainty that occurs when
the regression model is used to predict the response. The remaining component is the uncer-
tainty that remains even after the model is used. We de�ne the regression sum of squares,
SSR, as the di�erence between SST and SSE. This di�erence represents the sum of the
squares explained by the regression.

The fraction of the variance that is explained by the regression determines the good-
ness of the regression and is called the coe�cient of determination, R2. The coe�cient of
determination can be expressed by the following formula:

R2 =
SSR

SST
. (2.23)

The model is considered to be statistically signi�cant if it can account for a large fraction
of the variability in the response, i.e. yields large values for R2.

2.5 Measuring the Performance of a Forecasting Model

The performance of the forecasting model can be judged from its predictive ability in
terms of the following well-known evaluation criteria:

1. Symmetrical Mean Absolute Percentage Error (SMAPE),

2. Mean Absolute Percentage Error (MAPE),

3. Mean Absolute Error (MAE).

SMAPE calculates the symmetric absolute error between the actuals X and the forecast
F across all observations t of the test set of size n:

SMAPE =
1

n

n∑
t=1

|Xt − Ft|
(Xt + Ft)/2

. (2.24)

MAPE is calculated as follows:

MAPE =
1

T

T∑
t=1

|Xt − Ft
Xt

| × 100%. (2.25)

MAE measures how close forecasts or predictions are to the eventual outcomes and has
the following expression:
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MAE =
1

T

T∑
t=1

|Ft −Xt|. (2.26)

2.6 Second Order DWT Statistical Analysis

Let x(t) be a wide sense stationary random signal. The DWT coe�cients of its projection
on a space V0 are:

dm[n] = 〈x(t), ψm,n(t)〉. (2.27)

The autocorrelation of this sequence is:

Rdm [k, l] = E {dm[k]d∗m[l]} = E {〈x(t), ψm,k(t)〉, 〈x(t), ψm,l(t)〉∗} =

= E

{∫ ∞
−∞

x(t)ψm,k(t)
∗dt

∫ ∞
−∞

x(u)∗ψm,l(u)du

}
=

∫ ∞
−∞

∫ ∞
−∞

E {x(t)x∗(u)}ψ∗m,k(t)ψm,l(u)dtdu.

(2.28)

Because x is stationary:
E {x(t)x∗(u)} = Rx(t− u), (2.29)

so:

Rdm [k, l] =

∫ ∞
−∞

∫ ∞
−∞

Rx(t− u)ψ∗m,k(t)ψm,l(u)dtdu

=

∫ ∞
−∞

(Rx(t) ∗ ψm,l(t))ψ∗m,k(t)dt,
(2.30)

or, using Parseval theorem we obtain:

Rdm [k, l] =
1

2π

∫ ∞
−∞
F {Rx(t) ∗ ψm,l(t)} (ω)F∗ {ψm,k(t)} (ω)dω. (2.31)

Taking into consideration that the wavelets are real functions:

Rdm [k, l] =
1

2π

∫ ∞
−∞
F {Rx(t)} (ω)F {ψm,l(t)} (ω)F∗ {ψm,k(t)} (ω)dω. (2.32)

But:
F {ψm,l(t)} (ω) = 2

m
2 e−jω2

mlF {ψ} (2mω), (2.33)

and:

Rdm [k, l] =
1

2π

∫ ∞
−∞
F {Rx(t)} (ω)2

m
2 e−jω2

mlF {ψ} (2mω)2
m
2 e−jω2

mkF∗ {ψ} (2mω)dω. (2.34)
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or:

Rdm [k, l] =
1

2π

∫ ∞
−∞
F {Rx(t)} (ω)2

m
2 e−jω2

m(l−k)|F {ψ} (2mω)|2dω. (2.35)

After changing the variable ν = 2mω we obtain:

Rdm [k, l] =
1

2π

∫ ∞
−∞
F {Rx(t)} (2−mν)e−jν(l−k)|F {ψ} (ν)|2dν (2.36)

The last integral can be decomposed into a series of integrals on intervals of length 2π:

Rdm [k, l] =
1

2π

∞∑
p=−∞

∫ (2p+1)π

(2p−1)π
F {Rx(t)} (2−mν)e−jν(l−k)|F {ψ} (ν)|2dν. (2.37)

After changing again the variable w = ν − 2pπ we obtain:

Rdm [k, l] =
1

2π

∞∑
p=−∞

∫ π

−π
F {Rx(t)}

(
2−m(w + 2p− π)

)
e−jw(l−k)|F {ψ} (w + 2pπ)|2dw.

(2.38)
For m→∞ the previous equation becomes:

Rd∞ [k, l] =
1

2π

∞∑
p=−∞

∫ π

−π
F {Rx(t)} (0)e−jw(l−k)|F {ψ} (w + 2pπ)|2dw =

=
1

2π
F {Rx(t)} (0)

∫ π

−π

∞∑
p=−∞

|F {ψ} (w + 2pπ)|2e−jw(l−k)dw.
(2.39)

If the DWT is computed using orthogonal wavelets, then:

∞∑
p=−∞

|F {ψ} (w + 2pπ)|2 = 1 (2.40)

and equation (2.38) becomes:

Rd∞ [k, l] =
1

2π
F {Rx(t)} (0)

∫ π

−π
e−jw(l−k)dw. (2.41)

The integral in equation (2.41) is proportional with the inverse discrete Fourier transform
of the constant 1, which equals the sequence δ[k − l]. So, equation (2.41) can be written:

Rd∞ [k, l] = F {Rx(t)} (0)δ[k − l]. (2.42)

Hence, the sequence d∞[n] is not correlated. So, we just proved that asymptotically
(when the number of decomposition levels tends to in�nity), the DWT decorrelates the
input random process.
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The means and the variances of the DWT coe�cients are computed in the following.

E {dm[k]} = E {〈x(t), ψm,k(t)〉} = E

{∫ ∞
−∞

x(t)ψ∗m,k(t)dt

}
. (2.43)

After applying Fubini's theorem, the equation (2.43) becomes:

E {dm[k]} =

∫ ∞
−∞

E {x(t)}ψ∗m,k(t)dt =

∫ ∞
−∞

µxψ
∗
m,k(t)dt = µxF

{
ψ∗m,k

}
(0) (2.44)

Using the equation (2.33), the expectation of the wavelet coe�cients becomes:

E {dm[k]} = µx2
−m

2 F {ψ} (0) = 0 (2.45)

because F {ψ} (0) = 0.
So, the expectation of each wavelet coe�cients sequence is null. The variance of the

detail wavelet coe�cients can be computed with the aid of their autocorrelation function in
(2.36) because they have null expectation:

E
{
d2m[k]

}
= Rdm [0] =

1

2π

∫ ∞
−∞
F {Rx(t)} (2−mν)|F {ψ} (ν)|2dν (2.46)

For m→∞ the previous equation becomes:

E
{
d2∞[k]

}
= F {Rx(t)} (0)

1

2π

∫ ∞
−∞
|F {ψ} (ν)|2dν = F {Rx(t)} (0)Rψ(0) =

= F {Rx(t)} (0)

(2.47)

for orthogonal wavelets.
Hence, asymptotically, the detail wavelet coe�cients represent a zero mean white noise

with the variance equal with the value of the power spectral density of the input signal
computed in zero. This variance depends only on the input process being independent of
the mother wavelets used in the implementation of the DWT.

In the following is analyzed an interesting particular case when the input process is a
zero mean white noise with the variance equal to σ2. In this case, F {Rx(t)} (ω) = σ2 and
the equation (2.38) becomes:

Rdm [k, l] =
1

2π

∞∑
p=−∞

∫ π

−π
σ2e−jw(l−k)|F {ψ} (w + 2pπ)|2dw =

=
σ2

2π

∫ π

−π

∞∑
p=−∞

|F {ψ} (w + 2pπ)|2e−jw(l−k)dω =

=
σ2

2π

∫ π

−π

∞∑
p=−∞

|F {ψ} (w + 2pπ)|2e−jw(l−k)dw.

(2.48)
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In the case of orthogonal wavelets the previous equation can be written:

Rdm [k, l] =
σ2

2π

∫ π

−π
e−jw(l−k)dw = σ2δ[k − l]. (2.49)

So, if the input process is a white noise with zero mean and variance σ2, then all the
wavelet coe�cients are zero mean white noises with the same variance as the input process.

The DWT does not correlate the white noise. This result could seem a paradox, taking
into consideration the quadrature mirror �lters used for the implementation of the DWT
because any �lter correlates the white noise. When the input signal of the DWT is a white
noise, then the sequences of detail coe�cients from any decomposition level of the DWT are
white noises as well, having the same variance.

Another important particular case, when the DWT's input random process has long range
dependence, will be treated in a following section, in connection with the problem of Hurst
parameter estimation. We will propose in that section a new method for the estimation of
the Hurst parameter for long range dependent stationary random processes.

2.7 Self-similarity and Long-Range Dependence

In this section we will introduce the concepts of self-similarity and long range dependence
which will be applied to the analysis of communication networks tra�c in Chapter 4. Self-
similarity, or scale-invariance, is an important notion in the understanding of network tra�c,
[KP99]. A process is self-similar if its statistical behavior is independent of the time-scale,
meaning that the statistical characteristics of the process may appear similar at di�erent
time scales, [Rut06]. In the last years there have been made a series of empirical studies
on tra�c measurements from various communication networks. These studies have proved
that the actual tra�c is self-similar (fractal) or long-range dependent, [KFR02], [CB97],
[LTWW93], [KP99], [UP02], [AV98], [OS01], [GS09]. Thus, several models of long-range
dependent processes have been introduced. The most well-known models of long-range de-
pendent processes are fGn (thus second-order self-similarity) and FARIMA, [KMF04]. There
is a number of di�erent de�nitions for self-similarity. Considering a continuous-time process
Y = Y (t), we de�ne its self-similarity in the sense of �nite dimensional distributions:

De�nition 8. The process Y( t), t ≥ 0 is self-similar with self-similarity parameter H (Hurst
parameter) if:

Y (t) = a−HY (at), ∀t ≥ 0, ∀a > 0, 0 < H < 1. (2.50)

The process Y can never be stationary because stationarity implies Y (t) = Y (at), but
Y is assumed to have stationary increments.

Considering a discrete time stochastic process or time series (for example the tra�c
volume, measured in packets, bytes, or bits), X (t), with t ∈ Z, we de�ne the second-order
self-similarity, respective the asymptotically second-order self-similarity, [KP99].
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De�nition 9. X(t) is exactly second-order self-similar with Hurst parameter H (0.5 <H
<1) if:

γ(k) =
σ2

2

(
(k + 1)2H − 2k2H + (k − 1)2H

)
, k ≥ 1, (2.51)

where γ(k) represents the autocovariance function of the m-aggregated process X(m) of X at
aggregation level m.

X(m) is de�ned as:

X(m)(i) =
1

m

mi∑
t=m(i−1)+1

X(t). (2.52)

If X is the increment process of a self-similar process Y de�ned in (2.50), (X(i) =
Y (i+ 1)− Y (i)), then for all integers m:

X = m1−HX(m). (2.53)

X is self-similar when it has the same ACF ρ(k) as the series X(m) for all m, where ρ(k) is
de�ned as follows:

ρ(k) = E [(Xt − µ)(Xt+k − µ)] . (2.54)

X is exactly self-similar if the relation (2.53) is satis�ed for every m, [WPT98].
A stationary sequence X is asymptotically self-similar if the relation (2.52) is satis�ed

for m→∞, [WPT98].
From De�nition 8 and 9 we can observe that a random process could be self-similar or

exactly self-similar. The second concept, the exact self-similarity, imposes a certain structure
for the autocorrelation of the corresponding random process (given in equation (2.51)). This
constraint can be considered further in its exact form or only asymptotically.

Processes with LRD are often confused with self-similar processes, but they are di�erent,
meaning that some self-similar processes may exhibit LRD, but not all processes having LRD
are self-similar.

The form γ(k) = (k + 1)2H − 2k2H + (k − 1)2H in equation (2.51) from De�nition 9 is
related to LRD. The autocorrelation function of a fractional Gaussian noise (fGn) satis�es
the following equation, [OS01]:

ρ(k) = 2γ(k) = [(k + 1)2H − 2k2H + (k − 1)2H ]σ2. (2.55)

For k=0 the equation (2.55) will be:

ρ(0) = [12H + (−1)2H ]σ2 = 2σ2. (2.56)

We can observe that in this case the value in 0 of the ACF do not depend on H.
For H=0 the equation (2.55) will be:

ρ(k) = 0, for k 6= 0, (2.57)
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meaning that:

ρ(k) =

{
2σ2, k = 0
0, k 6= 0

(2.58)

which represent the autocorrelation of a white noise.
For H = 0 the fGn becomes a white noise, which does not manifest LRD.
In [Cle05] the asymptotically behavior of the autocorrelation of a fGn is analyzed.
If Hurst parameter is between 0 and 0.5:

ρ(k) ∼ H(2H − 1)k2H−2, (2.59)

while if 0.5 <H <1, the autocorrelation has an asymptotically behavior, [Cle05]:

ρ(k) ∼ cpk
−α, (2.60)

with 0 < α < 1 and cp is a positive constant. At the border between the two asymptotically
behaviors described in equations (2.59) and (2.60) lies the case : H = 0.5. In the case of
equation (2.59):

0 < H < 0.5⇐⇒ 0 < 2H < 1⇐⇒ −2 < 2H − 2 < −1 (2.61)

k2H−2 =
1

k2−2H
<

1

k
. (2.62)

The series with the general term k2H−2 described in (2.59) is convergent. In the case of
(2.60):

k−α =
1

kα
>

1

k
. (2.63)

In this case, the series with the general term the ACF ρ(k) diverges:

∞∑
k=−∞

ρ(k) =∞. (2.64)

So, the convergence of the series with the general term the autocorrelation of the input
signal depends on the values of the Hurst parameter. This is why analyzing the convergence
of this series we can specify the interval in which the value of H is situated: (0, 0.5) if the
series is convergent and (0.5, 1) if the series is divergent.

Finally, for H = 0, the fGn becomes a white noise and:

ρ(k) = 2σ2δ(k), and (2.65)

∞∑
k=−∞

ρ(k) = 2σ2

∞∑
k=−∞

δ(k) = 2σ2. (2.66)
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So, in this case the series with the general term the ACF, ρ(k), converges as well.
When the ACF ρ(k) slowly decays and the equation (2.62) is satis�ed, we call the cor-

responding stationary process X (t) long-range dependent, [KP99]. On the contrary, short-
range dependence is characterized by quickly decaying correlations. These two regions are
separated by the case H=0.5. In this case, the series with the general term ρ(k) is divergent.
For 0 <H <0.5 the series with the general term ρ(k) is convergent.

The LRD of a stationary process Xt can be also de�ned in terms of power spectral density
[Cle04], taking into account the Winer-Hincin theorem.

De�nition 10. A stationary process Xt presents LRD if its power spectral density satis�es
the following relation:

f(λ) ∼ cf |λ|−β, (2.67)

with λ→ 0, β ∈ (0, 1) and cf is a constant.

The term f(λ) represents the power spectral density of the stationary process and can
be computed applying the Wiener-Hincin theorem:

f(λ) =
∞∑

k=−∞

ρ(k)e−ikλ. (2.68)

In this case, the relation between the Hurst parameter H and β is the following: H =
(1 + β)/2.

De�nition 11. A stationary process Xt presents LRD (seasonal long memory) with a pole
at λ0 if the power spectral density satis�es the following relation:

f(λ) ∼ cf (cosλ− cosλ0)−β, (2.69)

with λ→ λ0, λ0 ∈ [0, π], β ∈ (0, 1) and cf is a constant.

The expressions of the power spectral densities from equations (2.67) and (2.68) enable
the estimation of Hurst parameter by spectral analysis. The major di�culty of this kind of
Hurst parameter estimation lays in the fact that these power spectral densities are divergent
around 0 for the equation (2.67) and around λ0 for the equation (2.68). The standard spectral
estimation techniques, based on Fourier transform, fail due to these divergences, but they
can be successfully substituted by spectral estimation techniques based on wavelets, as we
shall see in the following sub-sections.

2.8 The Estimation of Hurst Parameter

The Hurst parameter (H ) characterizes a process in terms of the degree of self-similarity
and LRD (the degree of persistence of the statistical phenomenon).
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The degree of self-similarity and LRD increases asH → 1, [Rut06]. Theoretically, H must
be between 0 and 1. A value equal to 0.5 indicates the lack of self-similarity or the presence
of short-range dependence (SRD), [AV98]. A value of H smaller than 0.5 indicates that
between the samples there is a SRD (the autocorrelation function is absolutely sumable). A
value greater than 0.5 indicates the existence of LRD (the ACF is not absolutely sumable).

It is very important to know that Hurst parameter can not be calculated, it can only
be estimated [KFR02], because there are not mathematical methods to calculate the H in
equation (2.55) for which the series with the general term the ACF is convergent. There
are various statistical techniques to estimate Hurst parameter (H ). By de�nition, the LRD
phenomenon is related to the power-law behavior of certain second-order statistics (variance,
covariance,...) of the process with respect to the durations of observation [AV98]. Many
estimators of H are therefore based on the idea of measuring the slope of a linear �t in a
log-log plot.

The Hurst parameter estimators can be classi�ed into two categories: operating in the
time domain and operating in the frequency domain.

� the estimators operating in the time domain are:

� Rescaled Adjusted Range (R/S) Method,

� Aggregated Variance Method,

� Absolute Value method,

� the estimators operating in the frequency domain are the following:

� Periodogram,

� Whittle estimator,

� Wavelet based LRD estimators.

2.8.1 Time Domain Estimators

The so-called variogram or R/S estimators are famous examples of the idea of measuring
the slope of a linear �t in a log-log plot.

Rescaled Adjusted Range (R/S) Method

Proposed by Hurst in 1951, the R/S statistic is one of the oldest and better known
methods for estimating the Hurst parameter, H, in a time series which presents LRD. For
a selection of subsets of the time series Ai, starting at ti and of size n+1, R/S statistic is
de�ned as presented in the following equation:

R

S
(ti, n) =

R(ti, n)

S(ti, n)
, (2.70)
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where R represents the adjusted range of the considered series, Ai, and S is the sample
variance of Ai.

The adjusted range R(ti, n) has the following physical interpretation. We suppose the
time series Ai represents the amounts of water per time unit �owing into a reservoir. Further-
more, water �ows out of the reservoir with a constant rate, such that the reservoir contains
the same amount of water at the tthi+n time unit as at the tthi time unit. Then R(ti, n) is
the minimum capacity of the reservoir such that it will not over�ow in the period ti to ti+n
inclusive.

The calculation of R(ti, n) proceeds as follows. Given ti and n, and the mean:

µ(ti, n) =
1

n+ 1

ti+n∑
l=ti

Al, (2.71)

the standard deviation can be expressed as follows:

S(ti, n) =

√√√√ 1

n+ 1

ti+n∑
l=ti

(Al − µ(ti, n))2, (2.72)

while R(ti, n) will be:

R(ti, n) = max
0≤l≤n

(
ti+l∑
j=ti

Aj − (l + 1)µ(ti, n)

)
− min

0≤l≤n

(
ti+l∑
j=ti

Aj − (l + 1)µ(ti, n)

)
. (2.73)

The rescaled adjusted range is then just R(ti, n)/S(ti, n). A single such calculation results
in one point on a graph of log10R(ti, n)/S(ti, n) against log10 n. By varying ti and n we obtain
a plot of R/S. The size n is varied from 10 to about N /8 (N is the total sample size) in
5,000 logarithmically-spaced steps (except for small n, where several calculations of R/S are
made for the same n and di�erent ti), [DSJX96]. The starting value ti is chosen randomly
in the range 1 to N-n. Finally, linear regression is used to �t a straight line to the R/S plot,
the slope of this line being an estimate of H, [LTWW93].

Aggregated Variance Method

The variance-time plot method is one of the easiest methods used to estimate Hurst
parameter. Being given a time series Xt with t ∈ (1, N), it is divided into blocks of length
m and aggregated as follows [Cle04]:

X(m)(k) =
1

m

km∑
i=(k−1)m+1

Xi, k = 1, 2, ...N/m. (2.74)
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The variance is given by:

̂var(X(m)) =
1

N/m− 1

N/m∑
k=1

(X(m)(k)− X̄)2. (2.75)

The plots are obtained by computing log(var(X(m))) against log(m) ("time") and by
�tting a simple least squares line through the resulting points in the plane, ignoring the
small values for m. If the estimate β of the asymptotic slope has values between -1 and 0 it
means LRD, and an estimate for the degree of LRD is given by H = 1 + β/2, [LTWW93].

Absolute Value Method

Absolute value method uses di�erent block sizes m for de�ning an aggregated series
X(m). The absolute moment of a discrete time series Xt is de�ned as:

AMm =
1

N/m

N/m∑
k=1

|X(m)(k)− X̄|, (2.76)

where X(m)(k) is the aggregate series of level m [PR06].

The log-log plot of AMm versus m, for varying levels m, should result in a straight line
with slope of H -1, if the data are LRD, [KFR02]. The slope is computed using a least squares
regression on the points.

2.8.2 Frequency Domain Estimators

LRD determines the spectrum of a process to behave as a power law for frequencies close
to 0. Therefore, it is normal to think of using spectral estimation to measure H parameter.

Periodogram

Periodogram method plots the logarithm of the spectral density of a time series X,
versus the logarithm of the frequency. In the case in which X is a long-range dependent
random process, this plot becomes a line. The slope provides an estimate of H, [KFR02].
The periodogram is given by:

I(ν) =
1

2πN
|
N∑
j=1

X(j)eijν |2, (2.77)

and represents an estimator for the spectral density of X, where ν is the frequency and N
is the length of the time series X.
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The periodogram is a standard estimator for the power spectral density. Taking into
account the limitations of the Fourier transform already presented in Chapter 1, this estima-
tor can be improved by substituting the Fourier transform with the Short Time Fourier Trans-
form (STFT). A new spectral estimator is obtained by averaging smoothed periodograms
computed with STFT on di�erent sequences of data:

E(ω) =
P∑
k=1

|x(t− kL) · wL(t)ejωtdt|2, (2.78)

where P is the number of data pieces, L their length and wL a weighting window.
When applied to long-range dependent data, such a spectral estimator results in an

estimator of H based on a linear �t in a log(ω) versus logE(ω) plot, which is strongly
biased. This happens because the constant-bandwidth spectral analysis performed does not
match with the structure of the power spectral density of a long-range dependent process.
The wavelet based spectral estimators, which will be presented in the following, perform a
constant relative bandwidth spectral analysis that matches with the structure of the power
spectral density of a long-range dependent process, [AV98].

Whittle Estimator

To diminish the drawbacks of the H estimator based on periodogram already men-
tioned, Whittle proposed the minimization of a likelihood function, which is applied to the
periodogram of the time series. It involves to �nd a function f(ν; η) which minimize the
expression:

Q(η) =

∫ ∞
−∞

I(ν)

f(ν; η)
dν +

∫ ∞
−∞

log f(ν; η)dη, (2.79)

where η is the vector of unknown parameters and I(ν) is the periodogram. The minimization
is performed for the variable η. By normalizing f(ν; η), the term

∫∞
−∞ log f(ν; η)dη becomes

equal to 0. Finding the value of η which minimizes Q, the unknown parameters and the
function f are identi�ed. Substituting the expression of the periodogram (which depends on
H), computed with one of the methods already presented, in the �rst term of the right hand
side of equation (2.79), the integral (which will depend on H as well) could be computed
and the minimum value of Q (which depends on H as well) will be found. This is the reason
why the Whittle estimator can be used to estimate H. The Whittle estimator is de�ned as
the value of η that minimize Q, [TT98].

The Discrete Whittle estimator

The MLE gives a coherent approach to estimator design, which is capable of producing
an unbiased, asymptotically e�cient estimator for H. Proposed by Whittle in 1953, the
Whittle estimator consists of two analytic approximations to the exact Gaussian MLE, in
order to avoid the huge computational complexity of the exact algorithm, [AV98].
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The �rst approximation basically replaces the covariance matrix by an integral of a
function of the spectrum. Because the computational di�culties remain after this appro-
ximation, a second approximation is performed. It consists in the discretization of the
frequency-domain integration rewritten in terms of the periodogram. Performing the two
approximations, the Discrete-Whittle (D-Whittle) estimator is obtained.

The D-Whittle estimator relies on the periodogram, inheriting the structure of the
Whittle estimator (which relies on the periodogram as it was already said) and the peri-
odogram has a low computational cost. However, a minimization procedure is involved.
This procedure requires many iterative evaluations, resulting a higher overall cost. Further-
more, problems of convergence to local minima may be found.

The use of periodogram makes the D-Whittle estimator asymptotically unbiased only.
This asymptotic comportment is not enough for a good estimator, which must be unbiased,
robust and e�cient.

Wavelet based LRD estimators

Abry and Veitch [AV98] proposed a Hurst parameter estimator at each scale of the
wavelet decomposition of the random process which must be analyzed. The mth scale esti-
mation is realized computing the expectation of the random variable:

em =
1

nm

nm∑
k=1

|dm[k]|2, (2.80)

where nm represents the length of the sequence of wavelet coe�cients obtained at the mth

decomposition level.
For the beginning, let us consider that the input random process is wide sense stationary.

The Abry-Veich estimator takes the form:

E {em} =
1

nm

nm∑
k=1

E
{
d2m[k]

}
. (2.81)

For stationary input random processes, the expectation of the wavelet coe�cients square
represents their variance, which is constant. Denoting this constant as σ2

m, the previous
equation becomes:

E {em} =
1

nm
nmσ

2
m = σ2

m =
1

2π

∫ ∞
−∞
F {Rx(t)} (2−mν)|F {ψ} (ν)|2dν. (2.82)

with the aid of equation (2.46).
For a random input process, continuous in time and with LRD:

F {Rx(τ)} (ν) = cf |ν|1−2H , (2.83)
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which substituted in (2.81) will give:

E {em} = σ2
m =

cf
2π

∫ ∞
−∞
|ν2−m|1−2H |F {ψ} (ν)|2dν =

=
cf
2π

2m(2H−1)
∫ ∞
−∞
|ν|1−2H |F {ψ} (ν)|2dν.

(2.84)

This estimator can be used in practice if the integral from the right side is convergent.
If the mother wavelet (MW) ψ is selected from the Daubechies family of MWs, then it

has a �nite e�ective bandwidth ωm:∫ ∞
−∞

u2|F {ψ} |2du <∞ (2.85)

Hence, the integral in equation (2.84) can be written as:∫
|u|<ωm

|u|1−2H |F {ψ} (u)|2du. (2.86)

The convergence problem can appear only around the point u = 0, if:

lim
u→0
|u|1−2H |F {ψ} (u)|2 =∞. (2.87)

Fortunately, Daubechies MWs have a positive number of vanishing moments, Nν , which
means that:

∀k = 0, 1, ..., Nν − 1,

∫ ∞
−∞

tkψ(t)dt ≡ 0. (2.88)

Taking in consideration the derivation in the frequency domain property of the Fourier
transform, the previous equation can be written as:

∀k = 0, 1, ..., Nν − 1,
1

jk
dkF {ψ(t)} (ω)

dωk

∣∣∣
ω=0

= 0. (2.89)

Hence, the Fourier transform and its Nν − 1 derivatives vanish in u = 0.
It can be decomposed around u = 0:

F {ψ(t)} (u) =
∞∑

k=Nν

uk

k!

dkF {ψ(t)} (u)

duk

∣∣∣
u=0

. (2.90)

obtaining a polynomial with the degree higher or equal to Nν .
Hence, the power spectral density of MW, |F {ψ(t)} (u)|2 behaves around the point ν = 0

as a polynomial with the degree higher or equal to 2Nν . So, the condition (2.87) is not
accomplished if:

2Nν > 2H − 1⇐⇒ Nν > H − 1

2
. (2.91)
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The LRD detection supposes that:

1

2
< H < 1. (2.92)

So, the integral in equation (2.84) is convergent for any MW from Daubechies family,
because for this family:

min
ν
{Nν} = 2. (2.93)

By making the substitution m→ m− 1 in equation (2.84) it results:

E {em−1} = σ2
m−1 =

cf2
m(2H−1) ∫∞

−∞ |u|
1−2H |F {ψ} (u)|2du

22H−1 =
σ2
m

22H−1 , (2.94)

or:
σ2
m

σ2
m−1

= 22H−1. (2.95)

Applying the logarithm in the previous equation, an estimator of the Hurst parameter is
obtained:

2Ĥ − 1 = log2σ̂
2
m − log2σ̂2

m−1 ⇐⇒ Ĥ =
1 + log2σ̂

2
m − log2σ̂2

m−1

2
. (2.96)

This is a very simple H estimator, which requires only the wavelet decomposition of
the input process and the estimation of the wavelets coe�cient variances at two successive
scales. For non-stationary input random processes this estimator is improper, because the
local variance of wavelet coe�cients is not longer constant. In this case, the random variable
from equation (2.80) must be used. Abry and Veitch [AV98] proposed the following estimator:

log2

(
1

nm

nm∑
k=1

E
{
d2m[k]

})
= (2 ˆHAV − 1)m+ ĉ (2.97)

where ĉ estimates the constant log2(cf
∫∞
−∞ |ν|

1−2H |F {ψ(t)} (ν)|2dν).
Performing a weighted least squares �t between the scales m1 and m2 yields the following

explicit formula:

ĤAV (m1,m2) =
1

2

[∑m2

m=m1
smmηm −

∑m2

m=m1
smm

∑m2

m=m1
smηm∑m2

m=m1
sm
∑m2

m=m1
smm2 − (

∑m2

m=m1
smm)2

+ 1

]
, (2.98)

where

ηm = log2(
1

nm

nm∑
k=1

d2m[k]), (2.99)

and the weight sm = (n · ln22)/2m+1 is the inverse of the theoretical asymptotic variance of
nm and n represents the length of the entire sequence of wavelet coe�cients [AV98].

Stationarity hypothesis testing is di�cult in the presence of LRD, where many classical
statistical approaches cease to hold.
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The estimator (2.98) was treated in [AV98] for non-stationary random processes with
LRD which have stationary increments as the fBm processes. This kind of non stationarity
appears frequently in practice. For example in the context of Ethernet tra�c the �rst thing
to note is that data is not stationary and this is caused by the hidden periodicities or of the
diurnal cycle, lunch breaks etc. On the other hand, it is reasonable to expect that for smaller
timescales where network conditions are relatively stable, stationarity will be a natural and
useful assumption. So, Ethernet tra�c is stationary at same scales and not stationary at
other scales. For this reason were considered the scales m1 and m2 in the design of Abry-
Veitch estimator. Finally, the input random process could have overall trends. These trends
represent the last source of non-stationarity for the input random process.

The performance of Abry-Veitch estimator is analyzed in [AV98]. It is an unbiased
estimator, robust and e�cient which requires less computational resources than other H
estimators, because it uses the DWT which can be computed very fast (multiple of O(N)),
for example Whittle estimator (which requires more computational complexity due to its
recursive nature). Its e�ciency comes from the fact that it attains the Cramer-Rao bound.

In the design of the Abry-Veitch estimator is assumed that a continuous-time random
process, x(t), is available. There are numerous cases where only discrete time observations
of the input process are available. In the following these observations will be denoted as
x[1], x[2], ..., x[N ]. For continuous-time random processes, the wavelet coe�cients are com-
puted using the equation:

dm[k] = 〈x(t), ψm,k(t)〉 =

∫ ∞
−∞

x(t)ψm,k(t)dt. (2.100)

The integral from the previous equation can not be computed if only discrete observations
of the process x(t) are available. So, this integral must be discretized:

dx[m, k] =
∑
l

x[l]ψm,k[l] =
∑
l

x[l]2−
m
2 ψ(2−ml − k) =

= 2−
m
2

∑
l

x[l]ψ(
l

2m
− k) =

1
√
nm

N∑
l=1

x[l]ψ(
l

nm
− k).

(2.101)

With the change of variable l = nm(p+ k), the last equation becomes:

dx[m, k] =
1
√
nm

Nn−1
m −k∑

p=n−1
m −k

x[nm(p+ k)]ψ(p) =

Nn−1
m −k∑

p=n−1
m −k

am[p]x[nm(p+ k)], (2.102)

where am[p] is a collection of discrete �lters coe�cients determined by the MW used [IL87].
The wavelets coe�cients dm[k] and the coe�cients dx[m, k] have similar properties. One

can replace dm[k] with dx[m, k] and use the Abry-Veitch estimator, [AFTV03]. The resulting
quantities:

eN(nm) =
1

Nm

Nm∑
l=1

d2x[n, k], (2.103)
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are called generalized quadrature variations of the process x[l] and their substitution in the
expression of the Abry-Veitch estimator give a new H estimator, which can be called dis-
crete Abry-Veitch estimator, or generalized quadrature variations Hurst parameter estimator
based on wavelets, because one of its parameters is the mother wavelets selected for its imple-
mentation. The performance of those Hurst estimators is analyzed in [AFTV03]. They are
consistent and have asymptotic normality. The complexity of the corresponding algorithms
is O(N), the same as the complexity of the Abry-Veitch estimator.

This class of estimators is robust against non-stationarity. They were tested for fBm
and linear fractional stable processes in [AFTV03]. This is the class of Hurst parameter
estimators which are the most appropriate the solve the problem of WiMAX tra�c which
represent the subject of Chapter 4 of this thesis. WiMAX tra�c data, which represent the
subject of this thesis, are discrete observations of a continuous-time random process, which
is non-stationary, because it has overall trend as it will be proved in Chapter 3. So, for LRD
analysis of WiMAX tra�c, the best class of Hurst parameter estimators based on wavelets,
seems to be the generalized quadrature variations estimators class.

2.9 Conclusions

In this chapter we aimed to present some elementary statistics and we introduced some
basic ideas of time series analysis and forecasting that will be used in the following chapters.
We introduced an important parametric family of stationary time series, ARMA processes
which are frequently used in the modeling of time series, due to their high generality. A
generalization of this class, which incorporates a wide range of non-stationary series, is
provided by the ARIMA processes. ARIMA models are �exible and can be applied to a wide
spectrum of time series analysis. They are used for: �nancial, meteorological or derived from
man made activities time series. Finding an appropriate model implies the order selection
and parameters estimation.

The estimation methods presented in this chapter enable us to �nd, for given values of p
and q, an ARMA(p,q) model to �t a given series of data. A number of di�erent procedures can
be employed to test whether the selected model is really a statistically su�cient description
of the time series.

In the last few years measurements of various types of network tra�c proved that the
tra�c exhibits LRD and self-similarity. A key parameter characterizing self-similar processes
is the Hurst parameter H. Thus, an overview of the theory and methods developed to deal
with long-range dependent data were presented in this chapter.

One of the theoretical contributions of this thesis is the second order DWT statistical
analysis presented in section 2.6, in equations (2.27) to (2.49). It permits to understand
how does the sequences of wavelet coe�cients obtained by computing the DWT of a wide
sense stationary random process look like. The mean, variance and autocorrelation of those
sequences are computed in general and for the particular case of input white Gaussian noise.
An asymptotic analysis, proving the decorrelation e�ect of the DWT is also reported. A
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further research direction is the generalization of this statistical analysis for non-stationary
random signals.

A very simple Hurst parameter's estimation method, based on the previously mentioned
second order DWT statistical analysis, is proposed in equation (2.95). This estimation
method works for second order wide sense stationary random processes. It was simply
generalized to the Abry-Veitch Hurst parameter's estimator which works for non-stationary
continuous in time random processes. Next this estimator was discretized obtaining the
generalized quadrature variations Hurst parameter's estimator based on wavelets. This is
another theoretical contribution of this thesis.

The selection of the most appropriate mother wavelets for the computation of the DWT
implied in the Hurst parameter estimation method must be made based on equation (2.93).
The superiority of Hurst parameter's estimation method based on wavelets against other
methods will be proved by simulation in Chapter 4.



Chapter 3

Time-series Mining. Application to

Forecasting

Time-series forecasting is an important area of forecasting where the historical values
are collected and analyzed in order to develop a model describing the behavior of the series.
There are examples of communication signals which represent time-series. A typical example
is the tra�c developed in a communication network. To support the growth of demands,
communication companies are investing in new technologies to improve their services. How-
ever, in the case of permanent growing of the demands, in order to assure the users supply,
a network capacity planning tool should be used. For capacity planning purposes, one only
needs to know the tra�c baseline in the future along with possible �uctuations of the tra�c
around this particular baseline. The communication services providers should anticipate fu-
ture demands and should know where and when the upgrades must be done in the network.
This requirement is even more important in wireless networks. There are three modern
technologies for the wireless networks: Wi-Fi, WiMAX and LTE.

Worldwide interoperability for Microwave Access (WiMAX) is a telecommunication tech-
nology based on IEEE 802.16 standard, capable of delivering advanced IP applications, such
as voice, video, and data over the microwave spectrum RF to stationary and moving users.

A fundamental question about this technology is: How do the technologies compare in
terms of prioritizing tra�c and controlling quality? A partial response to the previous ques-
tion can be given by studying the tra�c forecasting methodology for the WiMAX technology.
The amount of tra�c through a BS can not be higher than the capacity of that BS. If the
amount of tra�c approaches the capacity of the BS, then the BS saturates and a lot o
messages are lost. So, it is necessary to know the capacity of the BS.

By assuming a deployment scenario �e.g., available bandwidth in MHz per cell, distribu-
tion of various user types, and application breakdown - it is then possible to calculate the
total tra�c volume of a BS.

Actual data rates, namely the throughput provided by the BSs throughout the cell and
experienced by users, depend on several factors including user distribution and propagation
conditions and pilot distribution and will need to be taken into account. More, di�erent
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users can use di�erent modulation techniques in the same interval of time. In addition, the
QoS is not constant with the amount of the BS capacity used. Lately, there is a signi�cant
increase in the need for delivering multimedia-based services to home residences and business
premises.

One of the most important attributes of a WiMAX network is its ad-hoc nature. Any
user localized into a cell of the network must obtain the access any time. So, the number of
users is not a priori known, neither the amount of tra�c in a cell.

3.1 Related Work

Time series forecasting has always been a challenging issue for many researchers. Re-
cently, many approaches involving time series models have been used for tra�c forecasting
such as pure statistical or based on neural networks [QR08].

For more than two decades, Box Jenkins ARIMA technique has been widely used for time
series forecasting. This class of models is used to build the time series model in a sequence
of steps which are repeated until the optimum model is achieved. The Box-Jenkins models
can be used to represent processes that are stationary or non-stationary.

As it was shown in Chapter 2, there are a lot of classical linear predictive models: Auto
Regressive (AR), Moving Average (MA), Autoregressive Moving Average (ARMA) which deal
with stationary series or Autoregressive Integrated Moving Average (ARIMA) which deals
with non-stationary series. All these models were already used for communications tra�c
prediction. For example, in [PTZD03], [BM99], [CYOT98] and [GP94] ARIMA models are
used for tra�c prediction. In [SL00] the authors propose a prediction algorithm based on
the Auto-Regressive Moving Average (ARMA) model and the Markov-Modulated Poisson
Process (MMPP). Fractional ARIMA models are used to predict tra�c in [ea99]. The
communication tra�c forecasting could have di�erent goals as for example: the anticipation
of the following pick of tra�c or the estimation of the moment when one of the features of
the tra�c will allow a given condition. If in the �rst case a short range prediction is required,
in the second case a long range prediction seems to be more appropriate. So, the selection
of the linear model must be made in accordance with the application. Another solution for
the tra�c forecasting is the use of neural networks.

The authors of [CRSR07] propose a Neural Network (NN) approach to predict TCP/IP
tra�c for all links of a backbone network. The data collected from the United Kingdom
Education and Research Network (UKERNA) was recorded into two datasets (every 10
minutes and every hour), between 12 AM of 14th June 2006 and 12 AM of 23th July 2006.
The data was analyzed using two forecasting types (or scales): real-time (every 10 minutes)
and short-term (hourly values). The equipments of the networks considered in the examples
already presented were connected through cables. Some papers published recently, present
cases of wireless tra�c forecasting. Neural networks are also used in [GS09] where the wireless
network tra�c is predicted for short time scale. Methods based on the use of Arti�cial Neural
Networks (ANN) for tra�c forecasting are also presented in [RSML10], [RL07] and [Rut06].
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According to the results presented in these papers we can conclude that ANN performs
better then the other forecasting techniques for small future time intervals, several weeks at
most. But if the goal of the forecasting method is to predict the moment when a feature of
the tra�c (as for example its overall tendency) will allow a speci�c condition (as for example
the saturation of a base station), meaning prediction for several months, than pure statistical
models are the ones that should be taken into consideration, because the performance of NNs
deteriorates in the absence of training. Both forecasting methods (based on linear predictive
models or based NNs) can be accelerated if they are applied in the wavelet domain, taking
into consideration the sparsity of the wavelet coe�cients.

The wavelet transform has been frequently used for time series analysis and forecasting
in recent years [PTZD03]. Wavelets can localize data in time-scale space. At high scales,
wavelets have a small time support and can "catch" discontinuities or singularities, while at
low scales the wavelets have a larger time support and can identify periodicities. Wavelets are
able to characterize the physical properties of the data. At low scales, the wavelets identify
the long-term trend of the data. By increasing the scale, the wavelets begin to reveal the
details of data, zooming in on its behavior at a moment of time.

A paper in which the authors proposed to model the tra�c evolution in a IP backbone
network at large time scales is [PTZD03]. The authors combined the wavelet analysis and
statistical data processing and developed models for long-term forecasting for capacity pla-
nning purposes. A combination between wavelet analysis and tra�c foresting is made also
in [WS02].

Inspired by [PTZD03] this chapter proposes a methodology to build forecasting models
for WiMAX tra�c. The goal of the forecasting methodology proposed in [PTZD03] was
to predict the moment when a part of a communication network, in which the equipments
are connected by cables, will saturate. The forecasting methodology proposed in [PTZD03]
supposes the utilization of ARIMA models in the wavelet domain to estimate two features
(the overall tendency and the variability) of the time-series belonging to a network tra�c
data base. In Figure 3.1 are shown the main steps followed in [PTZD03].

Figure 3.1: The forecasting methodology proposed in [PTZD03].

Our purpose is to adapt the forecasting algorithm proposed in [PTZD03] to the case
of a WiMAX network. In Figure 3.2 are presented the main steps followed in the case of
WiMAX tra�c. A series of modi�cation have been made in order to adapt the methodology
proposed in [PTZD03]. These modi�cations will be highlighted in the following sections of
this chapter.
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Figure 3.2: The forecasting methodology in the case of WiMAX tra�c.

A prediction of the moment when a BS will saturate can be realized using both estimated
features for the tra�c which corresponds to that BS. So, the tra�c forecasting methodology,
which will be applied in this chapter, analyzes the elements of the database (for knowledge
discovery purposes) and extracts two features of those time-series. The data features extrac-
tion represents a common operation in the data mining �eld. This methodology is based on
statistical data processing in the �eld of wavelets and follows CRISP-DM [ea00] phases, as
will be shown in the following section.

3.2 Phases of a Data Mining Project

Knowledge Discovery is a domain that searches new knowledge about an application
domain. One of its branches is Data mining which is an analytic process designed to explore
and to extract useful information from large volume of data.

According to CRISP-DM the process has several steps, [ea00]:

1. Business understanding,

2. Data understanding,

3. Data preparation,

4. Modeling,

5. Evaluation,

6. Deployment.

The succession of those phases and their interdependence are represented in Figure 3.3.

Figure 3.3: Phases of a data mining project.
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The �rst step of the data mining project is to understand the application in which it
is involved (business understanding). This goal is implemented iteratively, by collaboration
with other phases as data understanding or evaluation. The second step of the data mining
project is data understanding. It is based on the �rst step and has an iterative implemen-
tation as well. The data understanding goal can be seen as a feedback for the business
understanding goal. A �rst business understanding allows a preliminary data understan-
ding. With this acquired knowledge, the process of business understanding is improved and
as a consequence, the data understanding process is improved as well. The third phase of
the process is data preparation. Generally, the raw data are a�ected by inaccuracies of sen-
sors and acquisition systems, for example the traces from data bases contain missing data.
For this reason, the phase of data preparation is required in a data mining project. This
phase consist in putting the data in the most appropriate form for the subsequent phase of
the data mining project, which is the modeling phase. As in the case of the pair of phases
composed by the business understanding phase and the data understanding phase, the data
preparation and the modeling phases are interdependent. The modeling step is one of the
most important for the data mining project, because it allows the representation of data in
a form favorable for the extraction of some features useful for the application considered.
The evaluation phase is very important as well. It permits the appreciation of the quality of
the model selected. It has also a regulatory function in the data mining project, in�uencing
its �rst phase, the business understanding. The last step of the CRISP-DM project consists
in deployment. In the following are presented details about these phases and how are they
implemented for WiMAX tra�c prediction based on the forecasting algorithm proposed in
[PTZD03]. This algorithm was conceived for the prediction of the moment when the amount
of tra�c will produce the saturation of a router from a given node of a wired network. We
have adapted this algorithm for the case of WiMAX tra�c. The phases of the new algorithm
are: MRA of tra�c traces, selection of the most important resolutions for the extraction of
the overall tendency and of the variability of the WiMAX tra�c, ARIMA modeling of those
two features, models validation using the Box-Jenkins methodology and extraction of an
estimation of the moment when the corresponding BS will saturate. In the following are
presented details about the correspondence between the phases of the proposed algorithm
and the phases of a data-mining project, already mentioned.

3.2.1 Business Understanding

The �rst phase of a data mining project involves: understanding the objectives and
the requirements of the project, the problem de�nition and designing a preliminary plan to
achieve the objectives. The objective of the proposed algorithm is to predict when upgrades
of a given BS have to take place. We compute an aggregate demand for each BS and we look
at its evolution at time scales larger than one hour. The requirement of the project is to do
this prediction fast and precise. We have chosen the forecasting methodology proposed in
[PTZD03] and our preliminary plan was to adapt this methodology to the case of a WiMAX
network.
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3.2.2 Data Understanding

Data understanding phase implies collecting initial data, describing and exploring data.

In our case, the data was obtained by monitoring the tra�c from sixty-seven BSs com-
posing a WiMAX network. The duration of collection is of eight weeks, from March 17th till
May 11th, 2008. Our database is formed by numerical values representing the total number
of packets/bytes from uplink and downlink channels, for each of the 67 BSs. The values
were recorded every 15 minutes, so it can be easily deduced that for a given BS we have 96
samples/day, 672 samples/week, and a total number of 5376 samples. We observed that for
the 34th BS from the 7th week (April 28-May 5) there is a signi�cant loss of data due to an
error at the BS's level so we decided to remove this BS from our analysis. Hence, we deal
with sixty-six traces in uplink and sixty-six traces in downlink, eight weeks long.

The traces from the database are accessible in two formats corresponding to two measures
of the tra�c, in bytes and in packets. For our simulations we will analyze the tra�c mea-
sured in packets (because it is simpler to handle time-series with smaller values of samples),
corresponding to uplink and downlink channel. For the application under consideration,
which consists in estimating the moment when each BS's tra�c becomes comparable with
the BSs' capacity, it is more important the downlink channel (where the tra�c has a higher
volume). Therefore, the results presented in the following correspond to downlink channel.
The risk of saturation of the BS in uplink is considerably smaller.

3.2.3 Data Preparation

This phase includes selecting data to be used for analysis, data clearing, such as iden-
ti�cation of the potential errors in data sets, handling missing values, and removal of noises
or other unexpected results that could appear during the acquisition process.

The incomplete or missing data constitute a problem. Despite the e�orts made to reduce
their occurrence, in most cases missing values cannot be avoided. If the number of missing
values is big, the results are nor relevant. It is therefore essential to know how to minimize
the amount of missing values and which strategy to select in order to handle missing data.

There are several strategies of handling missing data, for example delete all instances
where there is at least one missing value, replacing missing attribute values by the attribute
mean or to estimate each of the missing values using the values that are present in the
dataset (interpolation) [RM05]. There are many di�erent interpolation methods such as
linear, polynomial, cubic or nearest neighbor interpolation. We choose the cubic interpolation
because for some BSs the missing values are situated on the �rst/last position of the vector
and this fact forbids us to use, for example, the linear interpolation.

At this stage, the input data is also analyzed in order to �nd if it contains periodicities.
The simple plot of the tra�c curves proved the existence of periodicities in the tra�c. In
Figure 3.4 is presented a signal representing the tra�c evolution during one week for a given
BS randomly selected.
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Figure 3.4: A curve describing the weekly tra�c evolution for a BS arbitrarily selected.

In order to verify the existence of periodicities we calculate the Fourier transform of the
signal and we analyze the power spectral density in Figure 3.5.

Looking at Figure 3.5 we can remark the eight harmonic. The sampling step used has a
value of 15 minutes. It corresponds to a sampling frequency of 1.1 mHz. So, the maximal
frequency contained in the analyzed power spectral densities equals half of the sampling
frequency, 0.55 mHz.

The representation contains 670 values. Hence the fundamental frequency of the repre-
sentation equals 0.55 mHz/335 (the value 355 was obtained by dividing the total number of
samples with 2). The frequency of the eighth harmonic equals 0.013 mHz. The correspond-
ing period is equal with 76923.07 s, or 1282.05 minutes or 21.36 hours (near 24 hours). The
period corresponding to the ninth harmonic equals 3,69 hours. Hence, we can associate the
eight harmonic with a period of 24 hours, because this value is closer of 21.36 hours than
3,69 hours. So, the results in previous �gure indicate that one of the most dominant periods
across all traces is the 24 hours one. The trace in Figure 3.5 was arbitrarily chosen. There are
other traces in the data base for which the eight harmonic is dominant, being several times
bigger than the other harmonics and proving the periodicity with the period of 24 hours of
the tra�c. However, depending on trace, the periodicity with the period of 24 hours can be
also hidden. This is for example the case of the BS 2 showed in Figure 3.6. This periodicity
has social reasons re�ecting a pattern of diurnal comportment of the network. Such seasonal
behavior is commonly observed in practical time-series.
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Figure 3.5: The power spectral density of the signal from Figure 4.4.

Figure 3.6: The power spectral density of the tra�c trace corresponding to BS2.
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In the rest of this chapter we will explain the phases of the forecasting algorithm using
an example of a particular trace (corresponding to BS1).

Next, we consider a tra�c curve recorded during eight weeks represented in Figure 3.7
with blue. The long-term trend (red line) and the deviations from the long-term trend (the
green and the black lines) are also shown in Figure 3.7.

Figure 3.7: A tra�c curve recorded during 8 weeks, its long term trend (approximation 6)
and the deviations from sixth approximation.

The curve contain speci�c underlying overall trends, represented in red. The curve in
blue describes the tra�c evolution measured in number of packets/s for a BS1, during eight
weeks. The other two curves show the deviation, plus (in green)/minus (in black), from
the signal approximation. It can be observed that a large part of the tra�c is contained
between the green and black lines. The red line indicates an increasing of the tra�c in time
suggesting the possibility of saturation of the corresponding BS1.

Next, we propose a multi-timescale analysis. We used the SWT to decompose the original
signal into a range of frequency bands. The level of decomposition (n), depends on the length
of the original signal. For a discrete signal, in order to be able to apply the SWT, if the
decomposition at level n is needed, 2n must divide evenly the length of the signal. The
nth level of decomposition, gives us n + 1 signals for processing: one approximation signal
corresponding to the current level and n detail sequences corresponding to each of the n
decomposition levels. The n approximation sequences compose a multiresolution analysis
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(MRA). The value of n gives the maximal number of resolutions which can be used in the
MRA. It corresponds to the poorer time resolution.

There is shown that WiMAX tra�c exhibits some periodicities which are better noticed if
we modify the sampling interval from 15 minutes to 90 minutes. So, by temporal decimation
with a factor of six, these time series can be transformed in signals at a temporal resolution of
1.5 hours. This represents the highest time resolution which is used in the proposed MRA.
Further on these temporal series will be denoted by casd(t). The derived temporal series
casd(2

pt) have a temporal resolution of 2p ∗ 1, 5 hours.

To extract the overall trends of the tra�c time series, the MRA of the temporal series
casd(t) using temporal resolutions between 1.5 and 96 hours is done.

We used Shensa's algorithm (which corresponds to the computation of the SWT with
six levels of decomposition). In this case the utilization of decimators (required for the
computation of DWT) is avoided but at each iteration di�erent low-pass and high-pass
�lters are used. The impulse responses of the �lters from the second iteration are obtained
by sub-sampling the impulse responses of the �lters from the �rst iteration and so on.

At each temporal resolution two categories of coe�cients are obtained: approximation
coe�cients and detail coe�cients. In Figure 3.8 are shown approximation coe�cients for six
level of decomposition.

Figure 3.8: The approximation coe�cients.
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It can be observed that with the increasing of the level of decomposition, the sequence
of approximation coe�cients becomes more smoothed. The �rst sequence of approximation
(approximation 1) contains very rapid and high oscillations. The sequence corresponding
to the sixth approximation is much smoothed and does not contain any rapid oscillation.
Preliminary simulations presented in a research rapport a�erent to a contract developed by
our department for Alcatel-Lucent Timisoara prove that the overall trend of the tra�c time
series is better highlighted by the approximation coe�cients obtained at the time resolution
of 96 hours (corresponding to the sixth decomposition level), c6. In the data-mining con-
text, the separation of the last sequence of approximation coe�cients obtained based on a
MRA can be regarded as a data preparation operation, because the form of this sequence is
appropriate for modeling the overall tendency of the tra�c with the aid of linear predictive
models.

The goal of using the MRA in our work is to extract the overall trend of the temporal
series that describes the tra�c under analysis with the aid of the approximation coe�cients,
and to extract the variability around the overall trend with the aid of some detail coe�cients.
The six detail coe�cients obtained after decomposition are depicted in Figure 3.9.

Figure 3.9: The detail coe�cients.

Another data preparation operation contained in the forecasting algorithm proposed in
[PTZD03] refers to detail coe�cients illustrated in Figure 3.9. These sequences re�ect the
variability of the tra�c and have di�erent energies. In the following the detail sequences
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corresponding to time resolutions between 1.5 hours and 96 hours will be denoted by d1−d6.
The equation describing the proposed multi-timescale analysis is:

casd(t) = c6(t) +
6∑
p=1

dp(t). (3.1)

Computing the energies of the detail sequences corresponding to our example the higher
energy corresponds to d3 (the time resolution of 12 hours). The next detail energy value
in decreasing order corresponds to a time resolution of 24 hours (the detail d4), where the
higher periodicities of the time series were observed. The energy of the coe�cients c6, d3 and
d4 represents a great quantity of the overall energy of the analyzed time series. The total
energy contained in casd(t) is de�ned as:

E =

∫ ∞
−∞
|casd(t)|2dt = ||casd(t)||2. (3.2)

Hence, we have decided to ignore the detail sequences with small energies to reduce the
amount of computation and to keep in our multi-timescale analysis only the details d3 and
d4, which explain the deviation of the time series around its overall trend :

casd(t) = c6(t) + βd3(t) + γd4(t). (3.3)

The model in (3.3) represents the new statistical model for the tra�c time-series which we
want to forecast. It reduces the multiple linear regression model in (3.1) at two components
only: the overall trend of the tra�c (described by c6) and the variability (described by the
detail coe�cients d3 and d4).

In order to use the new statistical model, the weights β and γ must be identi�ed (see
Figure 3.10 and 3.11). First, for the identi�cation of the weight β, the contribution of the
coe�cients d4 is neglected. So, the new statistical model will be expressed by:

casd(t) = c6(t) + βd3(t) + e(t), (3.4)

where e(t) represents the error of the new statistical model.
The parameter β can be found by minimizing the mean square of e(t), (see Figure 3.10),

βopt = argmin
β
‖casd(t)− c6(t)− βd3(t)‖2. (3.5)

The already mentioned search procedure can be also used for the computation of γ. This
time, the contribution of the coe�cients d4 is taken into account. The new statistical model
will be expressed by:

casd(t) = c6(t) + βoptd3(t) + γd4(t) + e(t). (3.6)
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Figure 3.10: The search of the best value of β.

Figure 3.11: The search of the best value of and γ.
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The parameter γ can be found by minimizing the new mean square of e(t), (see Figure 3.11),

γopt = argmin
γ
‖casd(t)− c6(t)− βoptd3(t)‖2. (3.7)

In Figure 3.12 is presented the reconstruction of the original tra�c (�rst plot) using
the estimation of the overall trend (realized using c6) and the estimation of the variability
(realized using βd3-second plot and βd3 + γd4-third plot). The approximation errors are
higher in the second plot than in the third plot. This remark justi�es the utilization of both
weights β and γ. The approximation in the second plot is smoother than the approximation
in the third plot. So, the utilization of the weight γ diminishes the high frequency components
of the errors.

Figure 3.12: The reconstruction of the original tra�c using the estimation of the overall
trend and the estimation of the variability.

For capacity planning purposes, one only needs to know the tra�c baseline in the future
along with possible �uctuations of the tra�c around this particular baseline. Since our goal
is not to forecast the exact amount of tra�c on a particular day in the future, we calculate
the weekly standard deviation as the average of the seven values computed within each week.
Such a metric represents the �uctuations of the tra�c around the long term trend from day
to day within each particular week.
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Given that the 6th approximation signal is a very smooth approximation of the original
signal, we calculate its average across each week, and create a new time series capturing the
long term trend from one week to the next. The resulting signal is presented in Figure 3.13,
in red. It can be observed that this signal represents a good approximation of the overall
tendency of the tra�c.

Figure 3.13: Approximation of the signal using the average weekly long term trend and the
average daily standard deviation within a week.

Approximating the original signal using weekly average values for the overall long term
trend, and the daily standard deviation results in a model which accurately captures the
desired behavior. So, our data are prepared now for the modeling of the overall tendency of
the tra�c and of the variability around this tendency.

3.2.4 Modeling

Modeling phase involves the selection of modeling technique and the estimation of
model's parameters. Our goal is to model the tendency and the variability of the tra�c
using linear time series models.

Let us denote the terms describing the variance with:

dt3(t) = βoptd3(t) + γoptd4(t). (3.8)
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We used the Box-Jenkins methodology [BJR94] to �t linear time series models, separately
for the overall trend and for the variability, starting with the estimations in Figure 3.12.
The estimations "mean approximation plus" and "mean approximation minus" are used for
modeling the variability while the estimation "approximation per week" is used for modeling
the overall trend. Such a procedure involves the following steps: determine the number of
di�erencing operations needed to render the time series stationary, determine the values of
p and q, estimate the polynomials φ, and θ.

In Figure 3.14 is presented the algorithm that lies at the basis of our Matlabr implemen-
tation of the Box-Jenkins methodology.

Figure 3.14: The Box-Jenkins methodology algorithm.
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The goal of the Box-Jenkins methodology is to �nd an appropriate model so that the
residuals are as small as possible and exhibit no pattern, [BJR94]. The residuals represent all
the in�uences on the time series which are not explained by other of its components (trend,
seasonal component, trade cycle).

The steps involved to build the model are repeated, in order to �nd a speci�c multiple
times formula that copies the patterns in the series as closely as possible and produces
accurate forecasts. The input data must be adjusted �rst to form a stationary series and
next, a basic model can be identi�ed [BJR94].

ACF and PAC are used to analyze the stationarity of a time series and to estimate
the orders p and q. The ACF and PAC plots are compared to the theoretical behavior of
these plots when the order is known. For AR(p) processes the sample ACF should have an
exponentially decreasing appearance for AR(1), while higher-order AR processes needs to be
supplemented with a PAC plot because they are often a mixture of exponentially decreasing
and damped sinusoidal components. The PAC of an AR(p) process becomes zero at lag p
+ 1 and greater. In the case of MA(q) processes the ACF becomes zero at lag q + 1 and
greater, while the sample PAC function is generally not helpful for identifying the order of
the MA(q) process.

In the following we will give an example to show how is applied the Box-Jenkins me-
thodology for WiMAX tra�c prediction. In Figure 3.15 are presented the approximation
coe�cients (the signal c6) and their �rst and second di�erences.

Figure 3.15: The approximation coe�cients (�rst line) and their �rst (second line) and
second (third line) di�erences.
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The �rst step is to study which of these sequences are stationary in order to establish
the value of the parameter d (the number of di�erencing operations required to obtain
a stationary time-series) of the ARIMA model. There are few tests for di�erent type of
stationarity: stationarity in mean, stationarity in variance, or wide sense (second order)
stationarity. The �rst test is to verify if the variance is constant, so we must compute
and compare the partial variances (de�ned on two disjoint intervals) of each of the three
time series (approximation, its �rst and its second di�erence). When both partial variances
corresponding to the same time-series has the same value, we can decide that the considered
series is stationary in variance. The second test is to verify if the time-series is stationary in
mean. To test this type of stationarity we have to compute and to compare the partial means
(de�ned on two disjoint intervals) of each of the three time-series. When both partial means
corresponding to the same time-series has the same value we can decide that the considered
series is stationary in mean. The third category of tests is dedicated to the wide sense
stationarity. The �rst form of this category of tests uses the ACFs of the three sequences.
These correlations are represented in Figure 3.16.

Figure 3.16: The autocorrelations of the three sequences approximaion (�rst line), their �rst
(second line) and second di�erences (third line).

The correlation of a stationary sequence must vanish after few samples. We can observe,
analyzing Figure 3.17, that the third sequence (from up to bottom) has the higher decreasing
speed. It has a peak in its middle. The sample values decreases rapidly at the left and
the right of this pick becoming close to zero. This decreasing is most rapidly than the
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corresponding decreasing observed in the middle plot from Figure 3.16 or in the up plot.
The second form of this category of tests uses the PACs of the three sequences. These
functions are represented in Figure 3.17. They are also useful for the estimation of orders p
and q.

Figure 3.17: The partial correlations of the three sequences approximation (�rst line), their
�rst (second line) and second di�erences (third line).

Analyzing Figure 3.17, we obtain the same conclusion as in the case of Figure 3.16,
namely that the sequence obtained by computing the second di�erence of the sequence of
approximations is more stationary than the sequence obtained by computing the �rst di�e-
rence of approximations or that the sequence of approximations itself. Finally, we propose
a last functional test to appreciate which of the three time series is stationary. The idea of
this test is to verify the repeatability of the Box-Jenkins procedure. We will present in the
following the implementation of this test in parallel with the presentation of the implementa-
tion in Matlabr of the Box-Jenkins methodology. In fact, in [BJR94] is devised to apply the
Box-Jenkins methodology two times. First is established an initial model that is optimized
in the second run. To initialize the Matlabr Box-Jenkins methodology (the function bj.m)
some information is required: the data to be modeled (one of the three sequences: the appro-
ximation c6, its �rst di�erence or its second di�erence in our case) and the initialization of
the model (the values p and q and the initial coe�cients φ of order p and θ of order q). The
results of the function bj.m are: the optimal values of coe�cients θ and φ (which permit the
mathematical description of the model), the degree in which the model �ts the data (it must
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be as small as possible) and the value of FPE which must be as small as possible. The orders
p and q of the polynomials φ and θ can be identi�ed based on of their coe�cients but the
value of the parameter d from the ARIMA model can not be identi�ed using the function
bj.m. For this reason it is identi�ed on the basis of stationarity tests. We have applied
�ve times the same Box-Jenkins methodology to each of the three sequences using the same
initialization model and we have appreciated the repeatability of this procedure, comparing
the individual results obtained. The repeatability of the Box-Jenkins methodology is very
poor for the sequence of approximation c6, so it can be concluded that this time-series is not
stationary and that the stationarity of its �rst derivative must be tested. Applying the same
test to the �rst di�erence of the approximation, c6, we have obtained that the repeatability
of the Box-Jenkins methodology is very good for this sequence, so it can be concluded that
this time-series is stationary. So, for the time-series considered in this example, d = 1, as it
was indicated by the other stationarity tests previously presented as well. We have obtained
the results presented in Table 3.1.

Run index Initial model �t Final model �t
1 20,85% 1,14%
2 0,5% 7,8%
3 8,4% 7,9%
4 2,6% 3,8%
5 0% 8,3%

Table 3.1: Results obtained running �ve times the Box-Jenkins methodology for the �rst
di�erence of the approximation c6.

The results corresponding to the �rst line of the Table 3.1 are represented in Figure 3.18
and those corresponding to the last line are represented in Figure 3.19.

In both Figure 3.18 and Figure 3.19 the original signal is represented in black, the output
of the initial model is represented in green and the output of the �nal model is represented
in blue. Applying the same test to the second di�erence of the approximation c6 we have
obtained results (which are not presented here for seek of concision) proving that the repeata-
bility of those results is inferior to the repeatability of the results obtained for the previous
time series. So, in the following we will use the sequence formed by the �rst di�erence of the
approximation c6.

The initial model can be selected using Matlabr function idpoly, and specifying the
polynomials B, C, D and F from the following equation:

y(t) = [B(q)/F (q)]u(t) + [C(q)/D(q)]e(t) (3.9)

Applying once again the Box-Jenkins methodology, the �nal model (represented in Figure 3.20
for the current example) is obtained. In Figure 3.20 is presented a comparison of the �rst
di�erence of the approximation c6 with the simulation in Matlabr of its ARIMA model given
by the Box-Jenkins methodology.
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Figure 3.18: Results obtained applying �rst time the Box-Jenkins methodology on the �rst
di�erence of the approximation c6.

Figure 3.19: Results obtained applying �fth time the Box-Jenkins methodology on the �rst
di�erence of the approximation c6.
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Figure 3.20: First di�erence of tra�c overall tendency before and after ARIMA modeling.

A comparison of the approximation c6 with the simulation in Matlabr of its ARIMA
model is presented in Figure 3.21.

Figure 3.21: Tra�c overall tendency before and after ARIMA modeling.
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In this �gure we represented the original time series with red, while the simulated model
is represented in blue. A good match of the original time series with the model can be
observed analyzing this �gure.

The models computed for the long term trend of all downlink traces from the database
are used for the next phase of our data mining project which consists in evaluation. These
models indicate that the �rst di�erence of those time-series is consistent with a simple MA
model (p = 0) with one or two terms (q=1 and d=1 or q=2 and d=1) plus a constant value
µot. This conclusion ends the modeling phase for the feature long-range dependence.

A similar modeling phase is implemented for the other feature of the WiMAX downlink
tra�c, the variability. As the approximation coe�cients c6 are used for the modeling of
tra�c long-range dependence, the detail coe�cients dt3 are used to appreciate the variability
of the tra�c. They are treated following a similar procedure based on the Box-Jenkins
methodology. A comparison of the original time series (represented in red) with the data
obtained simulating the model obtained applying two times the Box-Jenkins methodology
(represented in blue) in the case of the tra�c's variability is shown in Figure 3.22. A good
match of the original time series with the model is observed in this case as well.

Figure 3.22: Modeling the variability of the tra�c.

Applying the Box-Jenkins methodology on the deviation measurements (that re�ect the
variability of the tra�c), we found that the deviation dt3 can be expressed with simple MA
(p = 0) processes after one di�erencing operation. This conclusion ends the modeling part
of our data mining project.
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3.2.5 Evaluation

In this phase, both models (for overall tendency and variability of the tra�c) are evalu-
ated and all the precedent steps are reviewed. In order to see if the new statistical model in
(3.3) is representative, we used ANOVA and we computed the coe�cient of determination
de�ned in Chapter 2. The model is considered to be statistically signi�cant if it can account
for a large fraction of the variability in the response, i.e. yields large values for the coe�cient
of determination.

We have applied the forecasting algorithm to all the downlink traces, from the data base
and we have obtained statistically signi�cant ARIMA models for each tra�c overall tendency
and variability. We have identi�ed the model parameters (p and q) using MLE. The best
model was chosen as the one that provides the smallest AICC, BIC and FPE measures, while
o�ering the smallest mean square prediction error for a number of weeks ahead.

3.2.6 Deployment

The �nal stage, deployment, involves the application of the model to new data in order
to generate predictions. The moment when the saturation of the BS takes place can be
predicted comparing the trajectory of the overall tra�c forecast with the BS's saturation
threshold as shown in Figure 3.23.

Figure 3.23: The trajectory for the long-term forecasts.
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The need for one di�erencing operation at lag 1, and the existence of term µot across
the model indicate that the long-term trend of the downlink WiMAX tra�c is a simple
exponential smoothing with growth. The trajectory for the long-term forecasts will be a
sloping line, whose slope is equal to µot. Similar conclusion can be formulated for the
variability of the downlink WiMAX tra�c. The single di�erence between the long-term
trend and the variability is that the slope of the variability is much smaller than the slope
of the long-term trend. The trajectory for the variability forecast is a sloping line as well
but it has a much smaller slope. The sum of these sloping lines is a third line, parallel
with the trajectory of the long term forecast, which represents the trajectory of the overall
forecast. Hence, the risk of saturation of a BS is direct proportional with the slope of its
overall tendency. Given the estimates of µot across all models, corresponding to all BSs,
we can conclude based on the positive values of those slopes that all traces exhibit upward
trends, but grow at di�erent rates.

In Table 3.2 is presented a classi�cation of BSs in terms of the saturation risk. For BS50
the value of µot was estimated as equal to 2.061016 which is much higher than all the other
slopes, so we decided to exclude it from the classi�cation.

BS µot (Mb/s) BS µot (Mb/s) BS µot (Mb/s) BS µot (Mb/s)
63 239.860 48 114.810 13 68.311 1 45.068
60 185.470 52 110.250 53 66.329 2 44.729
3 177.680 8 109.040 6 65.579 9 43.102
49 176.070 7 105.240 5 63.415 42 42.878
61 164.030 56 104.720 26 59.885 33 41.441
57 157.260 55 99.920 12 58.708 30 41.395
62 146.310 65 99.174 39 57.789 28 39.973
67 144.630 20 97.943 38 57.675 41 38.129
54 143.880 29 97.655 35 54.498 40 33.587
18 138.230 46 93.711 37 53.458 36 32.224
64 134.220 10 91.557 23 52.729 25 30.601
16 131.730 19 83.567 45 51.019 15 29.400
59 130.530 43 79.215 22 50.872 11 27.622
58 130.350 44 78.572 24 49.404 31 26.144
51 123.960 66 74.149 27 46.704 17 25.052
4 118.100 14 71.564 47 45.879 21 24.614
32 15.921

Table 3.2: BSs risk of saturation.

BSs showed on the �rst column in Table 3.2 have high values of µot. This means that
these BSs have a higher risk of saturation than the other BSs. The BSs with higher risk of
saturation are the following: BS63, BS60, BS3, BS49, BS61.

We cannot come up with a single WiMAX network-wide forecasting model for the aggre-
gate demand. Di�erent parts of the network grow at di�erent rates (long-term trend), and
experience di�erent types of variation (deviation from the long-term trend).
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Our methodology extracts those trends from historical measurements and can identify
those BSs in the network that exhibit higher growth rates and thus may require additional
capacity in the future.

Our technique is capable, based on MRA and ARIMA modeling, of isolating the overall
long term trend and identifying those components that signi�cantly contribute to its varia-
bility. Predictions based on approximations of those components provide accurate estimates
with a minimal computational overhead.

3.3 Selection of Mother Wavelets

Another important goal in our work is to compare the in�uence of di�erent wavelets
families on the prediction accuracy. We propose a comparison between the following wavelets
families:

� Daubechies: db1, db2, db3, db4, db5.

� Coi�ets: coif1, coif2, coif3, coif4, coif5.

� Symlets: sym2, sym3, sym4.

� Biorthogonal: bior1.1, bior2.2, bior3.1, bior4.4, bior5.5.

� Reverse Biorthogonal: rbio1.1, rbio2.2, rbio3.3, rbio4.4, rbio5.5.

These families of mother wavelets were already introduced in Chapter 1 and their par-
ticularities as: length of support, number of vanishing moments, time, frequency and time-
frequency localizations. There are some features of the forecasting algorithm which can be
optimized by the mother wavelets selection such as: the results of the MRA, the values of
the weights β and γ given by the ANOVA procedure or the accuracy of the tra�c prediction.

We have applied the forecasting algorithm choosing each mother wavelets already men-
tioned and for each trace corresponding to each BS from the database. In Figure 3.24 are
shown the main steps followed in our work.

Figure 3.24: Main steps followed in our algorithm.
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We have divided each data sequence into two parts, each corresponding to a speci�c
interval of time. Data from the �rst interval (of seven weeks) were considered as historical
and were used for prediction, while data from the second interval (the last week) were used
to evaluate the quality of prediction. The results obtained are presented in Table 3.3.

Wavelet SMAPE MAPE MAE
coif 1 0.890 0.0020 0.9599
coif 2 0.837 0.0019 0.7191
db 1 0.812 0.0016 0.7327
db 2 0.855 0.0019 0.7768
db 3 0.857 0.0018 0.7678
db 4 0.834 0.0018 0.7563
db 5 0.823 0.0019 0.7730

bior 3.1 0.860 0.0018 0.7071
rbio 1.1 0.820 0.0017 0.8947
rbio 2.2 0.891 0.0018 0.7690
rbio 3.3 0.907 0.0022 1.0690
sym 2 0.895 0.0019 0.7412

Table 3.3: Comparison between wavelets, WiMAX tra�c.

These results consist in values of the three quality measurements, SMAPE, MAPE and
MAE. These measurements were computed for all BSs, using each of MWs mentioned. In
Table 3.3 are shown the mean values obtained for all the BSs.

SMAPE, MAPE and MAE, are calculated between the actual and the predicted tendency,
because for linear models the trajectory of the forecasts is represented through sloping line
which represents the weekly increase.

According to the results presented in Table 3.3., the 1st order Daubechies wavelet, db1,
which is the simplest of the Daubechies family, gives the best prediction performance. So, in
the case of communication tra�c time series, the time localization is more important than
the frequency localization. Good forecasting accuracy was obtained using mother wavelets
with good time-frequency localization as well, which have a reduced number of vanishing
moments, like rbio1.1.

3.4 Extension to Financial Domain

The prediction method already described can be applied not only in communications
domain but also in �nance.

The �nancial time-series analyzed in this section is composed by numerical values rep-
resenting the total number of EUR-USD currency exchanges realized in a time interval of
�fteen weeks. The values are recorded every 15 minutes. The overall tendency of this time-
series was estimated on the basis of a MRA, followed by an ARIMA modeling of the sequence
of approximation coe�cients. We have divided the data sequence into two parts: training



3.5. Conclusions 81

part of fourteen weeks and a testing part of one week. We followed the same steps shown
in Figure 3.24 as in the case of WiMAX tra�c. The results we obtained are presented in
Table 3.4.

Wavelet SMAPE MAPE MAE
coif 1 0.516 0.0821 0.4240
coif 2 0.453 0.0732 0.3799
db 1 0.454 0.0713 0.3690
db 2 0.497 0.0812 0.4199
db 3 0.531 0.0864 0.4461
db 4 0.527 0.0863 0.4459
db 5 0.546 0.0912 0.4710

bior 3.1 0.433 0.0712 0.3681
rbio 1.1 0.457 0.0716 0.3704
rbio 2.2 0.491 0.0790 0.4081
rbio 3.3 0.455 0.0716 0.3705
sym 2 0.453 0.0736 0.3813

Table 3.4: Comparison between wavelets on �nancial data.

The best forecasting performance is obtained using the mother wavelets db1(Haar) and
bior3.1, which have good time localization.

The �nancial data (the EUR-USD currency exchanges) exhibit an almost constant ten-
dency, while WiMAX tra�c presents a strong variability and its tendency (long term trend)
represents a sloping line. However, our algorithm is applicable to both types of data and the
obtained predictions are accurate.

3.5 Conclusions

In this chapter, we have proved by extensive simulations that the tra�c forecasting
methodology proposed in [PTZD03] can be adapted in the case of WiMAX tra�c. We have
adapted the methodology proposed in [PTZD03] to our case, by taking into consideration the
particularities of wireless networks as their ad-hoc nature or the non-stationary behavior of
their tra�c. To do this adaptation we have modi�ed the number of detail sequences retained
after the ANOVA analysis, performed using the MRA and required for the estimation of the
variability of the tra�c, from one (number used in [PTZD03]) to two. We have proposed a
methodology to select the two weights required, β and γ and we have added to the metho-
dology proposed in [PTZD03] a new test of stationarity (original in our knowledge) based
on the reiteration of the Box-Jenkins methodology.

Our technique is capable of isolating the overall long term trend and identifying those
components that signi�cantly contribute to its variability.

The statistical models for the overall tendency and for the variability of the tra�c can
be found neglecting some resolutions from the corresponding MRA. Selecting only appro-
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ximation coe�cients at the sixth decomposition level of the SWT, c6, we can predict the
overall tendency of WiMAX tra�c. Hence, the overall tendency of the tra�c is a very low
frequency signal, requiring mother wavelets with good frequency localization (which have
a big number of vanishing moments). The tra�c variability can be predicted by selecting
only detail coe�cients at the third and fourth decomposition levels, d3 and d4. Hence, the
tra�c's variability is a relative high frequency signal, requiring mother wavelets with good
time localization (as db1 or rbio1.1, which have a reduced number of vanishing moments).

In consequence, the proposed forecasting methodology requires mother wavelets with
both time and frequency good localization. So, we consider that the best results will be
obtained using mother wavelets with a good time-frequency localization, which corresponds
to a reduced number of vanishing moments.

Considering that the prediction accuracy of the tra�c variability is more important than
the prediction accuracy of the tra�c overall tendency, it results that time localization is
more important than the frequency localization. So, the best mother wavelet seems to be the
Haar wavelet (db1) in our case. With the increase of the number of vanishing moments, the
performance of the tra�c's prediction deteriorates. In [SMLI10], [RMBS10] and [RSML10]
we proposed an approach for predicting tra�c time series based on the association of the
SWT with Arti�cial Neural Networks (ANN). According to the results, we can conclude that
ANN performs better then the other forecasting techniques for small future time intervals,
several weeks at most. The superiority of short-term forecasting methods based on ANNs
can be explained by the higher computational complexity of these methods. They require a
supplementary training phase and are applied to all wavelet coe�cients (d1 − d6), without
computing weekly averages. But, if we are interested in the tendency of the tra�c, meaning
prediction for several months, than pure statistical models are the ones that should be taken
into consideration.

The non-stationarity of the traces from the database was highlighted. It is explained
by the non-constant overall tendency extracted from each trace. This behavior makes more
di�cult the estimation of the Hurst parameter presented in the following chapter.



Chapter 4

Knowledge Discovery in WiMAX Tra�c.

Long-range Dependence Analysis

Communication equipment generates and stores large amounts of data. In the last years
the topics of self-similarity and LRD in communication networks has become a very popular
research domain [CB97], [UP02], [AV98]. The analysis of real data challenged the engineers
as well as the researchers, so LRD has become more and more used in data analysis [OS01],
[KMF04]. Recent analysis of tra�c measurements from various communication networks
has revealed that the tra�c is long-range dependent or fractal (self-similar). These �ndings
revolutionized the understanding of network tra�c, giving an explanation of the di�erence
which appears between the theoretical estimated e�ciency and the e�ciency measured in
practice, so time-series analysis and modeling in terms of LRD have become more and more
used in data analysis.

In this chapter, we propose to analyze the uplink and downlink tra�c in a WiMAX
network in terms of LRD. The aim is to obtain the estimated values of H parameter, for each
uplink and downlink trace corresponding to all the BSs that compose the considered network.
We prove that some particularities of the network can be established analyzing these values.
Rules for the optimization of the network's exploitation can be derived analyzing these
particularities.

4.1 Related Work

Previous work, [KFR02], [KP99], [UP02], [AV98], [OS01], [GS09], [KMF04], proved the
utility of H for the analysis of the Internet tra�c. In [KFR02] is detected self-similarity in
world wide web (www) tra�c and are presented some possible causes for this comportment.
In [KP99] is observed that the self similarity of the tra�c in�uences the performance of
the corresponding network. Some network performance evaluation methods which take into
account the self-similarity of the tra�c are proposed. In [GS09] is observed that the predic-
tion of wireless network tra�c is in�uenced by its LRD. In 1993 was identi�ed the presence

83



84
CHAPTER 4. KNOWLEDGE DISCOVERY IN WIMAX TRAFFIC.

LONG-RANGE DEPENDENCE ANALYSIS

of LRD in data sets captured on Ethernet Local Area Network (LAN) tra�c, [Cle04]. In
the case of Ethernet LAN tra�c, LRD is manifested in the absence of a natural length of a
"burst"; at every time scale ranging from a few milliseconds to minutes and hours, bursts
consist of bursty sub-periods separated by less bursty sub-periods. So, a cause of LRD is
the hidden periodicities which are present in the time series analyzed. It is also shown that
the value of the Hurst parameter typically depends on the utilization level of the Ethernet
and can be used to measure "burstiness" of LAN tra�c. In [LTWW93] it is shown that
the H parameter is a function of the usage of Ethernet (higher usage meaning a higher
value of H). The reason for the considerable interest in this subject is the fact that the
engineering implications of LRD on queuing performance can be considerable. If Internet
tra�c is not well modeled using independent or short-range dependent (SRD) models, then
traditional queuing theory based on the assumption of Poisson processes is no longer ap-
propriate. Tra�c which is long-range dependent by nature can have a queuing performance
which is signi�cantly worse than Poisson tra�c [AV98]. It has been found [AV98] that a
higher H parameter often increases the delays in a network, the probability of packet loss
and a�ects a number of measures of engineering importance. The majority of the papers
already mentioned refer to networks on wires. The exception is the reference [GS09] which
refers to wireless networks.

4.2 Sources of LRD

In the literature, [Cle04], [Mis03], [GLMT05], [VB00], [CB97] several possible origins
for LRD in networks as: the hidden periodicities in tra�c, its variable rate, the existence of
heavy tail data streams, the feedback mechanisms in the TCP protocol or the bad positioning
of BSs, are commonly cited.

One of them is the hidden periodicities which are present in the time series [Cle04]. These
hidden periodicities are revealed by analyzing the power spectral densities of the time series.

In [Cle04] it is proved that the existence of video tra�c coded with Variable-bit rate
(VBR) induces the LRD. In this case, the LRD arises from the encoding mechanism whereby
video is encoded as a series of di�erences between frames with occasional full updates.

Aggregate tra�c is made up of many connections which arrive randomly. Each connec-
tion is characterized by its "size" representing the number of packets and by the "rate" of
transmitted packets. As showed in [CB97], the distributions of connections have very long
tails.

A random variable X is heavy tailed if for all α > 0 it satis�es:

P (X > x)eαx →∞, x→∞. (4.1)

In [Mis03] the authors show that LRD results by the aggregation of heavy-tailed data
streams.

Another potential cause of LRD is given by the feedback mechanisms in the Transmission
Control Protocol (TCP). Let's consider the transmission of a packet between a sender-
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receiver pair on a network. The data is sent usually according to a reliable transport protocol
like TCP. The release of packets to the network is decided by the �ow and congestion control
mechanism. Using a Markov model to simulate the behavior of TCP tra�c, the authors of
[GLMT05] concluded that the multiple timescale nature of tra�c generation, coupled with
transport protocol issues, make the appearance of LRD-like behavior inevitable, while in
[VB00] it is said that "TCP congestion control creates self similar tra�c (...) showing both
short-range and long-range dependence depending on system parameters".

LRD arises from network topology or routing algorithms as well [Cle04]. If a BS is bad
positioned into a wireless network, its tra�c is more di�cult than the tra�c of the other
BSs, which are well positioned, and it can behave LRD.

Determining the origin of LRD remains an important research area and it is essential to
�nd out which is the real origin of LRD. The presence of LRD can be controlled only its
origins are known. A possibility remains that it is a mixture of some or all of the sources
already mentioned.

The goal of this chapter is to analyze the WiMAX tra�c recorded in the data base, which
was already used and described in previous chapter, in order to establish if the corresponding
traces exhibit LRD or not. As it was already mentioned, one of the sources of LRD for a
BS is its bad positioning. The goal of LRD analysis reported in this chapter is to identify
the BSs which could be bad positioned in the architecture of the WiMAX network which
corresponds to the data base. To do this, we intend to separate the di�erent sources of LRD
and to eliminate the e�ects of all LRD sources with the exception of the bad positioning. To
attain this goal we have identi�ed some software products which can be used to estimate the
Hurst parameter for each uplink or downlink trace in the database, such as SELFIS which
will be presented in the next sub-section or some Matlabr functions as HEST , which will
be used in a subsequent sub-section.

SELFIS (SELF-similarity analysIS) is a java-based software tool for self-similarity and
LRD analysis, developed by T. Karagiannis and M. Faloutsos, [KMF04] at University of
California. It implements the following estimators of H: Aggregate Variance, Periodogram,
Variance of Residuals, Whittle Estimator, R/S, Absolute Moments and the Abry-Veitch
Estimator which were already presented in Chapter 2.

Using the H parameters estimated using the R/S estimator from SELFIS, we will identify
in the following some hidden periodicities in the WiMAX tra�c and we will �nd as solution
to reduce the e�ects of this �rst source of LRD, the segmentation of the time-series. As it was
already said, the other sources of LRD in data communication tra�c are: its variable rate,
the existence of heavy tail data streams, the feedback mechanisms in the TCP protocol and
the bad positioning of the BSs. These sources of LRD have di�erent e�ects in downlink and
in uplink. The principal di�erence between these two phases of wireless communications is
given by the access to Internet. The majority of users make more frequently downloads that
uploads on di�erent Internet sites. Generally, the messages transmitted in uplink are shorter
than the messages transmitted in downlink. The variability of the tra�c rate is produced by
mechanisms such as data streaming (required by multimedia applications) which are more



86
CHAPTER 4. KNOWLEDGE DISCOVERY IN WIMAX TRAFFIC.

LONG-RANGE DEPENDENCE ANALYSIS

speci�c for the downlink than for the uplink. Same mechanism, the data streaming, produces
time-series with heavy tail distributions, so this kind of distributions appear more frequently
in downlink than in uplink. The feedback mechanism in TCP protocol depends on the length
of the message which is currently transmitted. This mechanism works heavy in the case of
long messages. So, the feedback mechanism produces stronger LRD in downlink than in
uplink. For these reasons, we can consider as principal sources of LRD in uplink tra�c the
hidden periodicities and the bad positioning of BSs. In consequence, after the reduction of
LRD produced by hidden periodicities, we can consider that the single LRD source remained
in the uplink tra�c is the bad positioning of BSs. After the reduction of the e�ect of the
hidden periodicities we will compare the LRD comportment in uplink and downlink of each
BS, we will identify the normal behavior of a BS from the LRD point of view and we will
isolate the BSs which deviate from this normal behavior. These BSs could be considered as
bad positioned.

4.3 Evaluation of H Using R/S Method

By initial tests performed using the WiMAX data base (which are not presented here
to keep a decent length of the thesis), we have observed that SELFIS makes an acceptable
estimation of H for time series which have a long enough length, when the R/S estimator is
used. As we have stated in Chapter 2, the quality of the R/S estimation decrease with the
decreasing of the analyzed sequence length, due to the increasing of the polarization of that
estimator. For this reason, we will use the R/S estimator to prove that the tra�c from our
database contains some hidden periodicities. We have already observed a periodicity of 24
hours in the previous chapter. To make simpler the analysis of hidden periodicities, we have
separated the uplink and the downlink tra�c.

4.3.1 Downlink Tra�c

This section presents the evaluation of H with the aid of the R/S method in the case
of WiMAX downlink tra�c. Its goal is to highlight the particularities of WiMAX tra�c
from a LRD perspective. As it was already said, one of the sources of LRD in time-series
is represented by the hidden periodicities. To identify the possible periodicities, few LRD
analysis, for di�erent lengths of the time-series are helpful. First, the H parameter of the
entire time-series must be estimated. Second, the time-series must be segmented and the H
parameter of each segment must be estimated. If the H values of all segments are smaller
than the H value of the entire time-series, it can be deduced that the time-series contains
a hidden periodicity with a period belonging to a time interval having as inferior limit
the length of the segments and as superior limit the length of the entire time-series. To
identify other hidden periodicities, with shorter periods, the method already described can
be repeated, using shorter segments.
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The length of the entire time-series in our database is of eight weeks. As a �rst exper-
iment we calculated the value of H using the R/S estimator for the sixty-six time series,
corresponding to all BSs. The results are presented in Table 1 in Appendix. We can observe
that the values of H are between 0.57 and 0.756, so H belongs to the theoretical interval
that proves the presence of LRD (H ∈ [0.5, 1]). So, the downlink WiMAX tra�c exhibits
LRD, observation which can explain why the real performance of a real wireless network is
inferior to its value estimated theoretically.

Next, we searched the hidden periodicities. We have split the time series into weeks.
We have obtained eight new time series for each BSs and for each of these series we have
calculated the new values of H. The results are presented in Table 2 in Appendix. The
majority of the values of H are smaller than the H value of the entire series (composed
by the eight weeks). Hence, the downlink WiMAX series contain hidden periodicities with
values between a week and eight weeks. This source of LRD can be eliminated by performing
the LRD analysis on segments having the length of one day.

In the following we will present a similar LRD analysis for the uplink tra�c. Contrary
to the method presented in Chapter 3, where was considered only the downlink tra�c, we
are interested now in the uplink tra�c as well. The problem discussed in Chapter 3 was
connected with the estimation of the moment when a given BS will saturate. The saturation
appears only in the presence of a wide tra�c, and we have observed that the tra�c in
downlink is more intense than the tra�c in uplink. For this reason we have considered only
the downlink tra�c in Chapter 3. The problem proposed in this section is di�erent. We
try to separate the normal and the exceptional behaviors of the tra�c. To identify these
behaviors we must know the comportment of a BS in both downlink and uplink. For the
moment we are interested if the uplink tra�c contains hidden periodicities as well.

4.3.2 Uplink Tra�c

A simpli�ed LRD analysis can be done for the uplink tra�c, when some sources of LRD
are not present. Indeed video tra�c does not exist in uplink and the feedback mechanisms
in the TCP protocol do not manifest in uplink. So, the only two sources of LRD in uplink
are the hidden periodicities and the bad topology of the network. For this analysis we use
the same method for the estimation of H as in downlink, namely the R/S method.

First we use the R/S method to estimate the H parameter corresponding to the sixty-six
time series (66 BSs). The results are presented in Table 3 in Appendix. As in downlink,
the Hurst parameter belongs to the theoretical interval that proves the presence of LRD
(H ∈ [0.5, 1]). The values of H are between 0.56 and 0.754.

Next, we have split the time series into weeks. We have obtained eight new time series,
for each BS and for each of these series we have calculated the new values of H. The results
are presented in Table 4 in Appendix. The conclusion is that the entire series (of eight
weeks) exhibits stronger LRD than each weekly series. Hence, the uplink WiMAX tra�c
contains hidden periodicities with periods between one week and eight weeks as well. So, the
normal comportment of the WiMAX tra�c supposes the presence of hidden periodicities. It
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is plausible that one of those hidden periodicities to correspond to a period of four weeks,
taking into account social reasons connected with the organization of the work in enterprises
which supposes more deliveries at the end of the month and more production at the beginning
of the month. Another hidden periodicity could correspond to a period of a week, taking
into account the reduction of activity on the duration of weekends. The e�ect of those
hidden periodicities can be reduced by the segmentation of the time series. To continue the
identi�cation of hidden periodicities in WiMAX tra�c we must make another segmentation
of the time-series. The segments will have shorter lengths, of one day. To make the LRD
analysis of those segments we need a better estimator for H than the R/S estimator. As it
was speci�ed in Chapter 2, based on the theoretical arguments, the generalized quadrature
variations estimator based on wavelets is the best estimator for the Hurst parameter in the
case of discrete observations, as the traces in our database are. To verify experimentally this
assertion, we will compare in the following sub-section some SELFIS estimators with the
generalized quadrature variations Hurst parameter estimator based on wavelets.

4.4 A Comparison of Some Estimators of the Hurst Pa-

rameter Based on Simulation

The following estimators of the Hurst parameter are considered in the next simulations:
Aggregate variance, R/S, Periodogram, and Absolute moments (implemented in SELFIS)
and generalized quadrature variations estimator (also called discrete Abry-Veitch) (imple-
mented in Matlabr - function HEST). All these estimators were already de�ned and analyzed
in Chapter 2. We will use in the following simulations two types of random processes with
known values of H and we will check the estimated values given by di�erent estimation
methods.

For the �rst simulations we considered a White Gaussian Noise (WGN) as input process.
The corresponding value of H must be 0. The simulation results are presented in Table 4.1.

No. of samples Aggregate variance R/S Periodogram Abs. moments HEST
100 000 0.39 0.52 0.5 0.37 0.0028
10 000 0.51 0.53 0.47 0.49 -0.0035
4096 0.51 0.59 0.53 0.48 -0.034
1024 0.46 0.59 0.40 0.43 0.036

Table 4.1: WGN input process.

Analyzing the results in Table 4.1, it can be observed the increasing of the bias of R/S
estimations with the decreasing of the length of the input sequences. The superiority of the
wavelet based estimator (HEST) is obvious.

Next, we considered a fBm input process containing 10.000 samples, with the following
values of H: 0.5, 0.6, 0.7, 0.8, and 0.9. The results are shown in Table 4.2.
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Input process Aggregate variance R/S Periodogram Abs. moments HEST
fBm05 1.015 0.463 1.497 0.865 0.483
fBm06 0.986 0.387 1.597 0.817 0.583
fBm07 0.991 0.272 1.639 0.795 0.685
fBm08 0.994 0.162 1.614 0.774 0.789
fBm09 0.996 0.06 1.551 0.751 0.892

Table 4.2: fBm input process.

The results presented in Table 4.2 prove that the precision of Hurst parameter estimators
from SELFIS depends on its values. For small values of H, the R/S estimator seams to be
the best. For intermediate values of H, the Absolute moments estimator is the best one. For
high values of H, the best estimator used by SELFIS is the Aggregate variance. Once again,
the results obtained by applying the generalized quadrature variations estimator based on
wavelets are better than the results obtained by using estimators implemented in SELFIS.

The two types of simulations already analyzed recommend the use of the wavelet based
generalized quadrature variations estimator for Hurst parameter estimation. These results
are in agreement with the theoretical analysis made in sections 2.8.1 and 2.8.2, showing that
the generalized quadrature variations estimator based on wavelets is not polarized, robust and
e�cient and recommends the use of the generalized quadrature variations estimator based on
wavelets for the estimation of daily WiMAX tra�c's H parameter. The appropriateness of
this estimator for the LRD analysis of traces from our database can be explained adding two
supplementary reasons. The �rst reason is the discrete nature of the traces from our data
base (the number of packets of data is acquired every 15 minutes) because the generalized
quadrature variations estimator based on wavelets was specially conceived for discrete events
(see Chapter 2). The second reason is the non-stationary nature of the traces from our
database (already observed in Chapter 3 as a consequence of the evolution in time of the
overall tendency of the tra�c) which does not a�ect the precision of the estimation made by
the generalized quadrature variations estimator based on wavelets as it was shown in Chapter
2. The traces in the data base are discrete in time non-stationary random processes. The
source of non-stationarity is the tra�c's overall tendency.

4.5 Estimation of Hurst Parameter Using aWavelet Based

Method

In the following we will continue the LRD analysis of WiMAX tra�c by segmenting the
time-series having the length equal with a week, into segments with the length equal with
a day. In this section, we will apply the generalized quadrature variations Hurst parameter
estimator based on wavelets to the daily WiMAX tra�c. The wavelet transform with its
natural scale invariance and low computational cost is suitable for analyzing of LRD process.
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4.5.1 Downlink Tra�c

This section presents the evaluation of H in the case of WiMAX daily downlink tra�c.
We have already identi�ed in Chapter 3 a hidden periodicity of the downlink WiMAX tra�c,
with the period of a day (24 hours), which can be also explained by social reasons, taking
into account the cycle day-night. We believe that it is the hidden periodicity in the WiMAX
tra�c with the shorter period. The goal of this sub-section is to identify the normal behavior
of the downlink tra�c. The idea is to separate the BSs with normal behavior from the LRD
perspective. In the following, we will not be interested in the intrinsic values of the Hurst
parameter. The goal will be to identify the days with long-range dependent tra�c. We
will consider that a day has LRD if the corresponding value of H is bigger than 0.5. The
results are shown in Figure 1 in Appendix. The days with long-range dependent tra�c are
represented in black. For the majority of BSs, the number of black rectangles is bigger
than the number of white rectangles. Indeed, downlink daily tra�c exhibits LRD. Based on
these results we realized the BSs classi�cation in terms of the number of days for which the
downlink tra�c exhibits LRD (number of values H greater than 0.5). The results are shown
in Table 4.3.

Number of values H>0.5 BS
42 BS32
40 BS15
36 BS12, BS13, BS33, BS40
35 BS6, BS25, BS29, BS35, BS38
34 BS21, BS23, BS24, BS50
33 BS36, BS37, BS47
32 BS18, BS19, BS28, BS30, BS31
31 BS44
30 BS2, BS66
29 BS10, BS11, BS14, BS52
28 BS5, BS22, BS26, BS43, BS56
27 BS20, BS39, BS42, BS53, BS67
26 BS17, BS41, BS45, BS62
25 BS1, BS16, BS27, BS55, BS57, BS60
24 BS8
23 BS64
22 BS54, BS59
21 BS4, BS9
20 BS7, BS51
19 BS61, BS 65
18 BS48, BS58
17 BS3, BS46
16 BS49
14 BS63

Table 4.3: BSs classi�cation in downlink.

We can observe the extreme cases: BS63 with only 14 days with LRD tra�c (the best
case) and BS32 with 42 days with LRD tra�c (the worse case).



4.5. Estimation of Hurst Parameter Using a Wavelet Based Method 91

4.5.2 Uplink Tra�c

In the following we will analyze the H parameter for WiMAX uplink daily tra�c.
Taking into account the fact that the bad positioning of the BS, as source of LRD, a�ects
both uplink and downlink tra�c and the fact that there are more sources of LRD in downlink
than in uplink, it is preferable to analyze the uplink tra�c to identify the bad positioned BSs.
We have analyzed all the sixty-six traces of uplink tra�c using the generalized quadrature
variations estimator based on wavelets, for each of the days of the eight weeks, and we have
obtained the results presented in Figure 2 in Appendix. The uplink daily tra�c exhibits
LRD as well. For the uplink tra�c some sources of LRD can be eliminated, but the bad BSs
positioning is a common source of LRD for both uplink and downlink tra�c.

In Table 4.4 we realized the classi�cation of the sixty-six BSs in terms of the number of
days for which the uplink tra�c exhibits LRD (number of values H greater than 0.5).

Number of values H>0.5 BS
42 BS32
35 BS15
34 BS23
33 BS1, BS13, BS24, BS25, BS29, BS33, BS35, BS38,
32 BS21, BS50
30 BS31, BS37
29 BS6, BS26, BS30, BS36, BS41, BS44
28 BS10, BS12, BS66
27 BS20, BS40
26 BS5, BS11, BS22, BS42, BS47
25 BS14, BS19, BS27, BS52, BS54, BS60, BS67
24 BS8, BS18, BS28, BS45, BS55, BS56
23 BS2, BS16, BS39, BS64
22 BS43, BS57, BS62
21 BS17, BS53
19 BS9, BS65
18 BS46, BS59
17 BS58, BS61
16 BS4, BS7, BS51
15 BS48
14 BS3
12 BS49, BS62

Table 4.4: BSs classi�cation in uplink.

The worse case is given by BS32 for which the number of days with LRD tra�c is greater
than the number of days without LRD tra�c (42 days with LRD tra�c). The BSs with the
smallest number of days for which the tra�c manifest LRD are BS49 and BS62 (17 days
with LRD tra�c).
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4.5.3 BSs localization analysis in uplink and downlink

The goal of this section is the comparison between the daily uplink and downlink tra�c
for each BS. If the value estimated for Hurst parameter, corresponding to a given day, was
greater than 0.5 we decided that the tra�c of that day exhibits LRD.

The existence of LRD in the downlink channel is marked in Figure 3, in Appendix, with
red and the existence of LRD in the uplink channel is marked with green. If in a day both
channels are characterized by LRD then we have a black rectangle in Figure 3 in Appendix.

The number of days without LRD is greater than the number of days with LRD for a
number of twenty-two BSs. These BSs are: BS7, BS49, BS61, BS3, BS4, BS8, BS9, BS16,
BS17, BS46, BS48, BS51, BS53, BS55, BS58, BS59, BS60, BS62, BS63, BS64, BS65 and
BS67. The normal behavior of those BSs is without LRD. Hence, they are well positioned.

The downlink tra�c contains more days with LRD than the uplink tra�c for �fty-three
BSs. So, the normal behavior of one BS supposes more LRD in downlink than in uplink.
Taking into account the fact that the bad positioning of the BS a�ects both uplink and
downlink tra�c, it is preferable to analyze the uplink tra�c to identify the bad positioned
BSs. So, we can use the classi�cation in Table 4.4.

For other twenty-�ve BSs, the number of days with LRD is smaller than the number of
days without LRD in uplink. These BSs are: BS19, BS52, BS2, BS5, BS10, BS11, BS12,
BS14, BS18, BS20, BS21, BS22, BS27, BS28, BS30, BS39, BS40, BS42, BS43, BS45, BS47,
BS54, BS56, BS57 and BS66. Because the normal behavior of those BSs is without LRD in
uplink, we can consider that they are well positioned as well.

The tra�c of other six BSs has an atypically behavior, the number of days with LRD
in uplink being greater than the number of days with LRD in downlink. These BSs are:
BS23, BS26, BS32, BS35, BS41 and especially BS1. We consider that these BSs could be
repositioned at the next network release.

Finally, for thirteen BSs the LRD analysis proposed in this paper is not relevant because
there are more days with LRD in uplink than days without LRD. We will come back to
these BSs in the following sub-section. These BSs are: BS6, BS13, BS15, BS24, BS25, BS29,
BS31, BS33, BS36, BS37, BS38, BS44 and BS50.

4.6 Conclusions

The aim of this section was to identify the BSs bad positioned in a WiMAX network,
by tra�c analysis. The identi�cation of the BSs bad positioned is very important for the
planning of a wireless network. The LRD tra�c analysis can be developed further by the
investigation of di�erent kinds of tra�c which are separated at the input of each BS as for
example, best e�ort tra�c or multimedia tra�c or voice tra�c. We preferred to analyze
the tra�c in its most general form. We have proved that WiMAX tra�c exhibits LRD.
This LRD is in�uenced by the presence of some hidden periodicities in the time series. We
have identi�ed the hidden periodicities with the following periods: one month, one week
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and one day. All of them are produced by social mechanisms. They can be removed by
the segmentation of traces. We consider that the analysis of daily tra�c could solve the
considered problem. The bad position of the BS is a common LRD source for both downlink
and uplink channels.

There are more LRD sources for the downlink channel than for the uplink channel. So,
for the identi�cation of the BSs bad positioned it is simpler to analyze the uplink daily
tra�c.

We have presented and compared some Hurst parameter estimators highlighting the supe-
riority of the generalized quadrature variations estimator based on wavelets for the problem
of the identi�cation of the BSs which are bad positioned. This estimator is unbiased, e�ective
and robust, if the mother wavelets used for its implementation has a number of vanishing
moments equal or greater than two, as it was proved in Chapter 2. It was conceived for
discrete random processes, as are the traces in the considered database are. Its performance
is not a�ected by the non stationarity of the input random processes, as the traces in the
considered database are, whose non-stationarity is given by their overall tendencies. These
overall tendencies were identi�ed in Chapter 3. The superiority of generalized quadrature
variations estimator based on wavelets against the other estimators of Hurst parameter pre-
sented in section 2.8 was proved through simulations in Table 4.1 and Table 4.2 and justi�es
once again the opportunity of using wavelets in communications, giving an unitary character
to this thesis.

We were interested only in the presence of LRD, considering that a value of H greater
or equal with 0.5 proves the presence of LRD and that a value of H smaller than 0.5 proves
the absence of LRD. Based on this assumption we have introduced a new type of network's
representation in Figures 1, 2 and 3 showed in Appendix. This is a very simple and suggestive
representation of a network, enabling its analysis in uplink and downlink simultaneously. It
does not allow to appreciate the LRD degree, but this information seems to be redundant
for the BSs positioning analysis.

We realized the classi�cation of the positioning of BSs for the daily tra�c in terms of
the number of days for which the uplink tra�c shows LRD. This classi�cation is presented
in Table 4.4. It is very interesting to compare this table with the Table 3.2 which presents
the BSs' risk of saturation. The BSs with the bigger number of days with LRD in Table 4.4
are: BS32, BS15, BS23, BS1, BS13, BS24, BS25, BS33, BS35 and BS38. All these BSs
have a reduced risk of saturation in accordance with Table 3.2. The BS32 can be found
on the last position of Table 3.2, the BS15 is on the 60th position, the BS23 on the 43th

position, the BS1 on the 49th position and so on. So, the presence of LRD proves that the
corresponding tra�c is heavy, which reduces the e�ciency of the considered BS. A good
network must have an uniform risk of saturation and an uniform e�ciency for all its BSs.
The last observation permits the reciprocal validation of the results obtained in Chapter 3
(Table 3.2) and Chapter 4 (Table 4.3) despite the fact that both are estimation results.

Applying two estimation techniques, one for the risk of saturation and the second one for
the Hurst parameter, we have obtained results which are in agreement. Indeed, a BS with
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heavy tra�c (appreciated with the high frequency of apparition of daily LRD) will have a
reduced risk of saturation. This remark can be veri�ed analyzing comparatively Table 3.2
and Table 4.3. The �rst BSs in Table 4.3 could be found on the last column of Table 3.2
and vice versa. Taking into consideration this new rule, we can re�ne now the list of BSs
for which only the LRD analysis is not relevant. This list is composed by the following BSs:
BS6, BS13, BS15, BS24, BS25, BS29, BS31, BS33, BS36, BS37, BS38, BS44 and BS50.
Some of them can be found on the last column of Table 3.2. These BSs are: BS6, BS15,
BS24, BS25, BS31, BS33, BS36, BS37 and BS38. Taking into consideration their reduced
risk of saturation we believe that those BSs must be also repositioned. BS13, BS29 and
BS44 are well positioned because they have a high risk of saturation too. Finally, for BS50
we can not come with a conclusion because for this BS the value of µot in Table 3.2 has an
aberrant value.



Chapter 5

Conclusions and Perspectives

The aim of this thesis is �nding an answer to the following question: "It is possible
to identify the BSs which are bad positioned in a WiMAX network using tra�c analysis?
Taking into consideration the big volume of information contained in the database which
represented the object of investigation for this thesis, data mining was preferred as working
tool. Generally, data mining techniques require high computational complexity. One of the
phases of a data mining project is data preparation. A modality to reduce the computa-
tional complexity is to use an alternative representation of data in this phase of data mining
project. For this reason the association of data mining techniques with the wavelet theory
was assumed in this thesis. The pretext of this thesis is a database containing uplink and
downlink tra�c traces for 66 BSs composing a WiMAX network. Two data mining tech-
niques, forecasting and LRD analysis, were applied in the wavelet domain. The SWT was
used in the �rst case and the DWT was used in the second one. The well time-frequency
behavior of the WTs permitted the fast and appropriate treatment of these non stationary
signals. Both data mining techniques were applied in statistical form.

The most general form of tra�c was chosen for the experimental part of this thesis,
considering all types of packets collected at the input of a BS. This choice was made to
obtain the results in their most general form. This is a non-parametric strategy and provides
very robust results.

5.1 Contributions

In Chapter 3, we tested an algorithm for time series prediction proposed in [PTZD03]
for wired networks, in the case of wireless networks. This method is based on the SWT and
statistical time series analysis techniques, but can be viewed as an implementation of the
CRISP-DM methodology. We analyzed historical information, continuously collected during
a period of eight weeks, at the level of each BS composing the WiMAX network. The main
contributions of the thesis contained in Chapter 3 can be summarized as follows:

The utility of the algorithm proposed in [PTZD03] was validated in the case of wireless
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networks. The genuine algorithm was adapted for wireless tra�c. In the phase of data
preparation were considered two sequences of detail wavelet coe�cients as result of the
MRA, and the ANOVA procedure was modi�ed to �nd the weights of those sequences, which
minimize the mean square error of the approximation of tra�c variability. In the phase of
modeling, the application of the Box-Jenkins methodology was modi�ed also, applying a
new test of stationarity.

Predictions provided accurate estimates with a minimal computational cost (all the fore-
casts were obtained in seconds). The BSs with higher risk of saturation were identi�ed.

A strategy for the selection of MWs, based on their time-frequency localization was
proposed. It was veri�ed by simulations that in the case of tra�c forecasting, the time
localization is the most important feature of the MW used to compute the SWT. The best
forecasting results are obtained using the Haar MW. The SWT represents the best choice of
wavelet transform for wireless tra�c forecasting. This is due to its translation invariance.

The new forecasting algorithm proposed in this thesis is �exible enough to work with
many di�erent datasets such as network tra�c, �nancial data or transportation data, without
requiring important modi�cations.

We have compared the proposed prediction algorithm with other algorithms, developed
in our research team and published in companion papers, based on neural networks, and we
proved its utility for long term predictions. The proposed forecasting algorithm is faster than
other forecasting algorithms due to the use of wavelets (the wavelet transforms are fast), due
to the use of MRA (we used only three sequences of data: c6, d3 and d4) and due to the use
of weekly averages. It does not require any training phase.

In Chapter 4 we analyzed the tra�c data in a WiMAX network, in order to identify
its particularities. The strategy chosen for this purpose is based on the LRD of tra�c. The
presence of LRD in network tra�c has signi�cant impact on the network performance. The
performance of wireless communication networks depends on an e�cient architecture (good
positioning of base stations). The thesis contributions in Chapter 4 can be summarized as
follows:

The uplink and downlink tra�c of a wireless network was analyzed in terms of LRD.
It was observed that WiMAX network tra�c exhibits LRD. A cause for LRD appearance,
which is typical for wireless networks, was highlighted: the periodicities of one month, one
week and one day.

Some Hurst parameter's estimators were compared and the superiority of the estimator
based on wavelets was proved by simulations. Using the second order DWT statistical
analysis presented in section 2.6, in equations (2.27) to (2.49, we have proposed a new
very simple estimation method of the Hurst parameter in equation (2.95), which works for
second order wide sense stationary random processes. It was simply generalized to the
Abry-Veitch Hurst parameter's estimator which works for non-stationary continuous in time
random processes. Next, this estimator was discretized obtaining the generalized quadrature
variations Hurst parameter's estimator based on wavelets, which was applied to the tra�c
traces from the data base.
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Using the R/S estimator of the Hurst parameter, it was observed that LRD can be
reduced by splitting the time series corresponding to each BS into daily series. We observed
that normally, the daily tra�c through a BS should not manifest LRD. During the days with
LRD tra�c, some tra�c anomalies appeared.

The positioning of BSs in the topology of the WiMAX network was analyzed. The BSs
for which the number of days with LRD tra�c both in uplink and downlink is high, are
incorrect positioned. This time the generalized quadrature variations Hurst parameter's
estimator based on wavelets was used due to its better performance in comparison with the
R/S estimator. This fact was proved in Table 4.1 and Table 4.2. The results show which
BSs have a good localization in the topology of the network and which have not. The BSs
which have a bad localization in the topology of the network must be repositioned in the
future.

The BSs with bad localization have a reduced risk of saturation as well due to their heavy
tra�c. This remark permits to make a reciprocal validation of the results of estimation from
Chapter 3 with the aid of the estimation results presented in Chapter 4. From a total number
of sixty-six BSs the results of the positioning analysis made are not conclusive only for one
BS.

5.2 Perspectives

The appearance of LRD could be the result of some anomalies that occur during some
days. Anomaly detection refers to the problem of �nding patterns in data that do not
conform to the expected behavior. A PhD thesis recently presented in the Communications
Department of Electronics and Telecommunications Faculty of "Politehnica" University of
Timisoara [Sal11] treated the problem of anomaly detection in wired networks and proposed
an anomaly detector based on the association of the hyperanalytic SWT with the forth order
cumulant of the tra�c trace. A method to identify anomalies in the wireless tra�c would
be very interesting in further research.

Another future continuation of this research work consists in the statistical analysis of
DWT coe�cients of a non-stationary random process. This research could lead to �nd new
and better Hurst estimators among other results.
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BS 1 2 3 4 5 6 7 8 9 10 11
H 0.693 0.628 0.658 0.682 0.691 0.676 0.606 0.665 0.665 0.643 0.657

BS 12 13 14 15 16 17 18 19 20 21 22
H 0.689 0.656 0.692 0.645 0.641 0.706 0.641 0.618 0.657 0.657 0.600

BS 23 24 25 26 27 28 29 30 31 32 33
H 0.723 0.706 0.717 0.679 0.740 0.656 0.665 0.619 0.637 0.719 0.653

BS 35 36 37 38 39 40 41 42 43 44 45
H 0.678 0.729 0.667 0.626 0.719 0.697 0.698 0.756 0.622 0.660 0.681

BS 46 47 48 49 50 51 52 53 54 55 56
H 0.641 0.560 0.608 0.618 0.704 0.667 0.629 0.703 0.628 0.654 0.636

BS 57 58 59 60 61 62 63 64 65 66 67
H 0.603 0.591 0.669 0.648 0.664 0.661 0.581 0.631 0.657 0.727 0.628

Table 1: H values for the time series corresponding to all 66 BSs in downlink.
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Week BS1 BS2 BS3 BS4 BS5 BS6 BS7 BS8 BS9 BS10 BS11 BS12 BS13 BS14
1 0.732 0.534 0.680 0.594 0.715 0.631 0.524 0.692 0.617 0.636 0.624 0.597 0.622 0.747
2 0.724 0.153 0.656 0.544 0.651 0.651 0.512 0.534 0.662 0.541 0.596 0.426 0.550 0.574
3 0.662 0.334 0.527 0.446 0.622 0.636 0.570 0.593 0.615 0.550 0.599 0.580 0.567 0.636
4 0.736 0.580 0.575 0.480 0.535 0.528 0.604 0.500 0.647 0.458 0.645 0.586 0.600 0.593
5 0.737 0.568 0.507 0.547 0.635 0.597 0.563 0.605 0.618 0.565 0.698 0.569 0.508 0.643
6 0.724 0.662 0.424 0.617 0.599 0.548 0.515 0.570 0.626 0.523 0.640 0.550 0.559 0.635
7 0.693 0.545 0.398 0.698 0.575 0.511 0.622 0.591 0.730 0.504 0.781 0.610 0.616 0.691
8 0.634 0.597 0.435 0.541 0.651 0.495 0.538 0.573 0.628 0.574 0.601 0.548 0.661 0.512

Week BS15 BS16 BS17 BS18 BS19 BS20 BS21 BS22 BS23 BS24 BS25 BS26 BS27 BS28
1 0.745 0.607 0.624 0.561 0.470 0.170 0.788 0.549 0.689 0.681 0.711 0.707 0.814 0.530
2 0.640 0.545 0.715 0.487 0.661 0.538 0.677 0.516 0.639 0.649 0.645 0.669 0.642 0.724
3 0.645 0.528 0.726 0.554 0.449 0.616 0.594 0.725 0.656 0.637 0.682 0.644 0.590 0.627
4 0.643 0.590 0.651 0.547 0.568 0.560 0.547 0.633 0.506 0.611 0.622 0.633 0.584 0.633
5 0.613 0.524 0.753 0.451 0.530 0.595 0.596 0.592 0.696 0.594 0.709 0.616 0.663 0.681
6 0.534 0.562 0.685 0.424 0.603 0.623 0.642 0.573 0.626 0.656 0.572 0.633 0.726 0.594
7 0.726 0.553 0.694 0.505 0.541 0.519 0.568 0.630 0.593 0.630 0.685 0.629 0.543 0.469
8 0.662 0.543 0.453 0.603 0.663 0.653 0.659 0.488 0.551 0.515 0.548 0.565 0.632 0.762

Week BS29 BS30 BS31 BS32 BS33 BS35 BS36 BS37 BS38 BS39 BS40 BS41 BS42 BS43
1 0.595 0.434 0.434 0.727 0.467 0.605 0.739 0.727 0.661 0.702 0.675 0.711 0.629 0.637
2 0.470 0.490 0.490 0.679 0.521 0.657 0.609 0.537 0.580 0.611 0.624 0.658 0.742 0.587
3 0.547 0.542 0.542 0.707 0.640 0.514 0.590 0.515 0.557 0.630 0.633 0.633 0.683 0.610
4 0.522 0.535 0.535 0.733 0.617 0.637 0.612 0.668 0.552 0.688 0.681 0.679 0.634 0.539
5 0.594 0.573 0.573 0.344 0.636 0.505 0.709 0.580 0.535 0.669 0.724 0.730 0.687 0.568
6 0.538 0.619 0.619 0.511 0.656 0.597 0.667 0.612 0.520 0.544 0.708 0.620 0.615 0.524
7 0.552 0.637 0.637 0.695 0.654 0.714 0.690 0.589 0.617 0.534 0.651 0.626 0.572 0.592
8 0.578 0.689 0.689 0.481 0.602 0.554 0.697 0.618 0.662 0.705 0.479 0.653 0.595 0.572

Week BS44 BS45 BS46 BS47 BS48 BS49 BS50 BS51 BS52 BS53 BS54 BS55 BS56 BS57
1 0.565 0.634 0.734 0.093 0.574 0.714 0.704 0.629 0.542 0.654 0.632 0.623 0.497 0.622
2 0.582 0.542 0.630 0.618 0.590 0.375 0.466 0.568 0.540 0.714 0.562 0.627 0.615 0.628
3 0.466 0.571 0.707 0.698 0.542 0.473 0.484 0.584 0.502 0.616 0.544 0.652 0.546 0.602
4 0.489 0.541 0.641 0.611 0.526 0.441 0.535 0.548 0.580 0.661 0.554 0.593 0.588 0.614
5 0.581 0.597 0.572 0.550 0.520 0.450 0.469 0.628 0.622 0.724 0.524 0.623 0.569 0.561
6 0.559 0.419 0.587 0.593 0.518 0.435 0.507 0.576 0.662 0.571 0.498 0.635 0.475 0.584
7 0.702 0.587 0.532 0.549 0.550 0.563 0.725 0.596 0.440 0.586 0.582 0.550 0.589 0.517
8 0.601 0.583 0.618 0.573 0.448 0.574 0.484 0.600 0.504 0.589 0.456 0.504 0.533 0.583

Week BS58 BS59 BS60 BS61 BS62 BS63 BS64 BS65 BS66 BS67
1 0.552 0.653 0.642 0.649 0.651 0.527 0.687 0.574 0.770 0.608
2 0.517 0.590 0.625 0.568 0.625 0.510 0.618 0.636 0.668 0.606
3 0.583 0.611 0.539 0.525 0.576 0.459 0.549 0.595 0.683 0.534
4 0.501 0.549 0.501 0.638 0.510 0.519 0.491 0.620 0.719 0.539
5 0.519 0.552 0.546 0.580 0.586 0.528 0.512 0.645 0.626 0.530
6 0.553 0.555 0.498 0.489 0.616 0.514 0.552 0.591 0.587 0.582
7 0.499 0.544 0.524 0.472 0.577 0.525 0.457 0.565 0.490 0.451
8 0.577 0.484 0.454 0.532 0.518 0.514 0.483 0.599 0.587 0.565

Table 2: Weekly values of H, corresponding to 66 BSs in downlink.
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BS 1 2 3 4 5 6 7 8 9 10 11
H 0.718 0.746 0.646 0.673 0.695 0.652 0.599 0.656 0.666 0.636 0.656

BS 12 13 14 15 16 17 18 19 20 21 22
H 0.674 0.652 0.692 0.657 0.607 0.648 0.613 0.600 0.637 0.737 0.603

BS 23 24 25 26 27 28 29 30 31 32 33
H 0.754 0.707 0.730 0.690 0.721 0.658 0.657 0.638 0.651 0.723 0.648

BS 35 36 37 38 39 40 41 42 43 44 45
H 0.702 0.720 0.667 0.629 0.718 0.676 0.714 0.743 0.628 0.658 0.695

BS 46 47 48 49 50 51 52 53 54 55 56
H 0.631 0.637 0.597 0.598 0.697 0.654 0.631 0.713 0.614 0.655 0.614

BS 57 58 59 60 61 62 63 64 65 66 67
H 0.594 0.585 0.650 0.649 0.653 0.661 0.567 0.622 0.722 0.619

Table 3: H values for the time series corresponding to all 66 BSs in uplink.
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Week BS1 BS2 BS3 BS4 BS5 BS6 BS7 BS8 BS9 BS10 BS11 BS12 BS13 BS14
1 0.735 0.664 0.665 0.562 0.694 0.614 0.512 0.680 0.581 0.615 0.624 0.587 0.606 0.730
2 0.736 0.605 0.656 0.529 0.648 0.623 0.485 0.503 0.629 0.513 0.596 0.372 0.536 0.558
3 0.680 0.653 0.510 0.410 0.611 0.617 0.646 0.583 0.609 0.511 0.599 0.513 0.511 0.555
4 0.766 0.595 0.558 0.472 0.531 0.485 0.606 0.450 0.629 0.472 0.645 0.561 0.567 0.589
5 0.750 0.551 0.459 0.513 0.602 0.589 0.563 0.566 0.608 0.526 0.698 0.543 0.487 0.612
6 0.717 0.665 0.393 0.630 0.572 0.517 0.566 0.511 0.629 0.485 0.640 0.538 0.534 0.559
7 0.676 0.544 0.401 0.670 0.550 0.497 0.585 0.571 0.717 0.473 0.781 0.604 0.592 0.655
8 0.612 0.570 0.479 0.531 0.647 0.417 0.519 0.541 0.621 0.552 0.601 0.502 0.680 0.472

Week BS15 BS16 BS17 BS18 BS19 BS20 BS21 BS22 BS23 BS24 BS25 BS26 BS27 BS28
1 0.745 0.585 0.556 0.530 0.462 0.710 0.800 0.553 0.683 0.680 0.695 0.720 0.820 0.633
2 0.640 0.534 0.706 0.470 0.625 0.505 0.680 0.526 0.608 0.650 0.663 0.658 0.558 0.724
3 0.645 0.491 0.684 0.514 0.500 0.603 0.629 0.732 0.666 0.643 0.663 0.634 0.558 0.599
4 0.643 0.553 0.598 0.543 0.550 0.560 0.497 0.616 0.458 0.592 0.636 0.646 0.545 0.632
5 0.613 0.519 0.653 0.415 0.517 0.574 0.610 0.569 0.665 0.543 0.708 0.583 0.648 0.639
6 0.534 0.482 0.623 0.439 0.574 0.605 0.652 0.525 0.639 0.649 0.654 0.598 0.701 0.559
7 0.726 0.554 0.670 0.490 0.522 0.495 0.591 0.595 0.530 0.643 0.694 0.608 0.507 0.499
8 0.662 0.513 0.423 0.584 0.603 0.631 0.687 0.460 0.541 0.470 0.471 0.576 0.625 0.769

Week BS29 BS30 BS31 BS32 BS33 BS35 BS36 BS37 BS38 BS39 BS40 BS41 BS42 BS43
1 0.581 0.530 0.653 0.763 0.426 0.622 0.739 0.718 0.665 0.710 0.665 0.716 0.652 0.647
2 0.446 0.557 0.676 0.696 0.526 0.662 0.571 0.524 0.625 0.622 0.626 0.662 0.716 0.540
3 0.516 0.556 0.693 0.719 0.644 0.486 0.507 0.518 0.521 0.611 0.641 0.661 0.666 0.583
4 0.475 0.557 0.738 0.800 0.602 0.617 0.592 0.663 0.554 0.658 0.592 0.691 0.609 0.474
5 0.581 0.565 0.634 0.366 0.629 0.506 0.711 0.565 0.540 0.680 0.691 0.711 0.680 0.513
6 0.527 0.622 0.575 0.482 0.658 0.566 0.672 0.618 0.490 0.527 0.688 0.626 0.614 0.483
7 0.530 0.614 0.616 0.647 0.644 0.726 1.219 0.546 0.596 0.529 0.662 0.624 0.626 0.619
8 0.585 0.436 0.710 0.502 0.580 0.550 0.682 0.612 0.656 0.658 0.525 0.626 0.574 0.539

Week BS44 BS45 BS46 BS47 BS48 BS49 BS50 BS51 BS52 BS53 BS54 BS55 BS56 BS57
1 0.539 0.668 0.735 0.307 0.580 0.696 0.695 0.611 0.516 0.674 0.603 0.602 0.499 0.594
2 0.562 0.601 0.638 0.591 0.541 0.349 0.460 0.556 0.502 0.711 0.505 0.612 0.567 0.614
3 0.425 0.612 0.662 0.762 0.518 0.426 0.449 0.567 0.467 0.619 0.496 0.589 0.494 0.582
4 0.463 0.555 0.615 0.646 0.517 0.401 0.536 0.545 0.537 0.651 0.504 0.558 0.556 0.566
5 0.549 0.592 0.531 0.589 0.504 0.392 0.422 0.602 0.598 0.709 0.499 0.599 0.521 0.586
6 0.535 0.521 0.550 0.679 0.512 0.366 0.486 0.589 0.649 0.496 0.476 0.630 0.411 0.580
7 0.658 0.582 0.503 0.521 0.587 0.509 0.713 0.597 0.418 0.551 0.575 0.548 0.569 0.489
8 0.625 0.590 0.567 0.579 0.437 0.556 0.482 0.552 0.478 0.544 0.455 0.490 0.505 0.553

Week BS58 BS59 BS60 BS61 BS62 BS63 BS64 BS65 BS66 BS67
1 0.533 0.646 0.617 0.637 0.654 0.491 0.685 0.573 0.770 0.611
2 0.482 0.558 0.577 0.526 0.591 0.500 0.578 0.600 0.645 0.544
3 0.539 0.609 0.518 0.496 0.566 0.440 0.486 0.599 0.677 0.502
4 0.486 0.548 0.497 0.635 0.514 0.497 0.447 0.593 0.699 0.520
5 0.471 0.519 0.524 0.553 0.590 0.502 0.487 0.639 0.627 0.491
6 0.525 0.531 0.491 0.458 0.569 0.501 0.515 0.552 0.538 0.540
7 0.468 0.530 0.518 0.449 0.550 0.462 0.461 0.542 0.448 0.429
8 0.560 0.460 0.436 0.504 0.494 0.531 0.438 0.619 0.582 0.550

Table 4: Weekly values of H, corresponding to 66 BSs in uplink.
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Figure 1: The values of H corresponding to all 66 BSs, daily series in downlink. The Hurst
parameter's values bigger than 0.5 are representsed in black.
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Figure 2: The values of H corresponding to all 66 BSs, daily series in uplink.



104 Appendix

Figure 3: The LRD comportment of the considered WiMAX network.
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