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Introduction

o Interpolation : find a function f, such that f(x;) =w; , i =1:n, that
approximates f

o Approximation : find a function f , such that fA(xi) ~y; ,i=1:n, that
approximates f

o Often the interpolation or approximation

» assumes regularity hypotheses upon f .
» uses a family or a basis of functions to compute f

o Gaussian processes offer a rather general approach for interpolation and
approximation with a probabilistic point of view on the problem. This
point of view is emphasized here.

E—— 24 janvier 2023 3/14



A statistical approach to curve fitting

@ Problem : learn a curve y = f(x) from data (x;,¥;)i=1.n, Where
yi = f(xi) or y; = f(x;) +n; (n : noise process).

o If many points : kernel regression curve could be considered
o If few points : some prior upon f is required

o In parametric models, we assume that f = fy where § € © C RP is a
vector of parameters.

o In a parametric Bayesian approach, some prior p(6) is assumed and
p(0 | (xi,Yi)i=1.n) should be inferred to estimate 6.

o In Bayesian non parametric approaches, p(f | (Xi, y;i)i=1.n) is inferred.

@ How to choose a prior for the trajectories of f? Gaussian processes offer
a rather simple and effective answer.
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Gaussian processes (GPs)

Definition (GP)

A stochastic process z = (zx)xecre 18 @ Gaussian process with mean and
covariance parameter functions m(x) and k(x,x’) and we note
z ~ GP(m(x), k(x,x’)) if

Vn € N*, Vx = [x1,...,%,]T € R 2= [2x,, -+, 2, )T ~ N (m(x), K(x,x))
()
with m(x) = [m(x1), ..., m(x,)]7, [K(x,x)];; = k(x;,%;) and k a bilinear
function of the positive type : letting a = oy, . .., ] 7,
Vaq.m, k( Z X5, Z ;X;) = aTK(x,x)a > 0. (2)
i=1:n i=1:n

V.

o For the curve fitting problem, y; = f(x;) + n; (possibly n = 0) and the
prior over f is given by a GP : f(x) ~ GP(m(x), k(x,x")).
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Inference for Gaussian process priors : noiseless case

o y; = f(x;) fori=1:n. Let xp = [x1,...,%,|T and yp = [y1,.-,Yn]"
Let x; € R*™ denote a vector of points for which we want to infer
yi = f(xr) = [f(x11),-- - f(x1,m)]" € R™ from p(yr | x1,%p,yp). As
f(x) ~ GP(m(x), k(x,x)),

el = rten] > (] [kt te]) @

Then :
f(x7) | x1,xp,yp ~ N(mpost(xl)7Kpost(xbxl)) (4)
with
mpost(xl) = m(x[) + K(X], XD)K(XD7 XD)_I(f(XD) - m(XD))
Kpost(xr,x1) = K(x7,x7) — K(x7,xp)K(xp,xp) ' K(xp,xr)
(5)

@ Common choices :
» m(x) = 0.

-1
» k(x,x') = O'J% exp(7 | x — %' [|g-1) with X € RIx9,
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Inference for Gaussian process priors : noisy case

o y; = f(x;) +n; with E[n?] = 2. Then, cov(y;,y;) = k(zi, ;) + 026 ;.
Then we get the same results as before but with K(xp,xp) changed to
K(xp,xp) + 021 :

f(X[) | XI1,XD,YD ™~ N (mgost(xl)?KZOSt(xbxl)) (6)
with
m?, . (x7) = m(x;) + K(x7,xp)[K(xp,xp) + 021! (f(xp) — m(xp))

Kgost(xf,xl) =K(x7,x7) — K(x7,xp)[K(xp,xp) + 021 ' K(xp, xr)

(7)
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Example

o y =sin(2z) + N(0,02)
@ Noiseless and noisy cases with o, =0 and ¢, = .1

_ (171/)2

o m(x) =0and k(z,2') = ofe 7% (40,0, for data)

05

E) El 0 1 2 3 E) E)

Figure — o, =0 (left) and o,, = .1 (right). (04,0f,0,) = (.5,.5,0) (left) and
(0g,05,04) = (.5,.5,.1) (right)
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Parameter estimation : grid method
@ To make a convenient choice for the parameters one can choose to

maximize the likelihood p(yp,xp | 04,0¢,04) X (YD | XD, 0z, 0¢,0y) :

1 .
logp(yp | 02,0f,0y) = —3 (ng_lyD + log K| + nlog(27r)) with
_(%—%)2
Kij = O'Jch 202 + Ugéi,j-

o Grid search : example y = sin(2z)

E] El o 1 2 3 E] E]

Figure — (02,0%) € [.01,5] x [.01,5], 100 x 100 grid — left :
(0z,0f) = (.5,.5); right : (0z,mv,0p,mv) = (1.27,1.82)
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Parameter estimation : descent method

1 _
L(9) = logp(yp | 0) = —5 (YEK 'yp + log |K| + nlog(2n))
with 6 = (03,0?,02). Then

OLO) Ly (- typyhk -k 2K
2 0

AL(0)
a0y,

o Exercise : check the above expression for
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Parameter estimation : descent method (II)

_(mimey)?
o For K;; = ofe 74 CHIRE
0K 1
907~ ezl —Ixh) @ (ep T — 1) © (K — of1)
0K
oK
R = I
do?

where © is the Hadamard product : [A ® Bl;; = A;;B;;

o Usual descent techniques can be used but often there are local minima !
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UE Stochastic Dynamic models - Summary

@ We have studied

» Measure theory : definitions and theorems
(Radon-Nikodym-Lebesgue theorem)

» Optimal filtering of stochastic processes : stationary case (Wiener
filters), linear state space models and Kalman filter, non linear state
space models (particle filters)

» Stochastic differential equations : complements of probabilities and
Brownian motion, It6 integration and Ito formula, analytical and
numerical integration of SDEs, parameter estimation for SDEs.

» Time series analysis : AR, ARMA, ARIMA, ...

» Interpolation and approximation via Gaussian process priors.

o Topics that we did not cover : prediction theory WSS processes, more
advanced Kalman and particle filters, SDEs with jumps, deterministic
dynamic models (chaos, ...), models estimation and control.

o What could be done to improve the UE : duration, contents, ... 7
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