

Stochastic dynamic models Interpolation and integration

thierry. chonavel@imt-atlantique. fr

IMT Atlantique

Outline

- Introduction
- 2 Inference for Gaussian process priors
- 3 Parameter estimation

Introduction

- Interpolation : find a function \hat{f} , such that $\hat{f}(\mathbf{x}_i) = y_i$, i = 1:n, that approximates f
- Approximation : find a function \hat{f} , such that $\hat{f}(\mathbf{x}_i) \approx y_i$, i = 1:n, that approximates f
- Often the interpolation or approximation
 - \triangleright assumes regularity hypotheses upon f
 - uses a family or a basis of functions to compute \hat{f}
- Gaussian processes offer a rather general approach for interpolation and approximation with a probabilistic point of view on the problem. This point of view is emphasized here.

A statistical approach to curve fitting

- Problem: learn a curve $y = f(\mathbf{x})$ from data $(\mathbf{x}_i, y_i)_{i=1:n}$, where $y_i = f(\mathbf{x}_i)$ or $y_i = f(\mathbf{x}_i) + n_i$ (n : noise process).
- If many points: kernel regression curve could be considered
- ullet If few points : some prior upon f is required
- In parametric models, we assume that $f = f_{\theta}$ where $\theta \in \Theta \subset \mathbb{R}^p$ is a vector of parameters.
- In a parametric Bayesian approach, some prior $p(\theta)$ is assumed and $p(\theta \mid (\mathbf{x}_i, y_i)_{i=1:n})$ should be inferred to estimate θ .
- In Bayesian non parametric approaches, $p(f \mid (\mathbf{x}_i, y_i)_{i=1:n})$ is inferred.
- How to choose a prior for the trajectories of f? Gaussian processes offer a rather simple and effective answer.

Gaussian processes (GPs)

Definition (GP)

A stochastic process $z = (z_{\mathbf{x}})_{\mathbf{x} \in \mathbb{R}^d}$ is a Gaussian process with mean and covariance parameter functions $m(\mathbf{x})$ and $k(\mathbf{x}, \mathbf{x}')$ and we note $z \sim GP(m(\mathbf{x}), k(\mathbf{x}, \mathbf{x}'))$ if

$$\forall n \in \mathbb{N}^*, \ \forall \mathbf{x} = [\mathbf{x}_1, \dots, \mathbf{x}_n]^T \in \mathbb{R}^{d \times n}, \ \mathbf{z} = [z_{\mathbf{x}_1}, \dots, z_{\mathbf{x}_n}]^T \sim \mathcal{N}\left(\mathbf{m}(\mathbf{x}), \mathbf{K}(\mathbf{x}, \mathbf{x})\right)$$
(1)

with $\mathbf{m}(\mathbf{x}) = [m(\mathbf{x}_1), \dots, m(\mathbf{x}_n)]^T$, $[\mathbf{K}(\mathbf{x}, \mathbf{x})]_{ij} = k(\mathbf{x}_i, \mathbf{x}_j)$ and k a bilinear function of the positive type : letting $\boldsymbol{\alpha} = [\alpha_1, \dots, \alpha_n]^T$,

$$\forall \alpha_{1:n}, \ k(\sum_{i=1:n} \alpha_i \mathbf{x}_i, \sum_{i=1:n} \alpha_i \mathbf{x}_i) = \boldsymbol{\alpha}^T \mathbf{K}(\mathbf{x}, \mathbf{x}) \boldsymbol{\alpha} \ge 0.$$
 (2)

• For the curve fitting problem, $y_i = f(\mathbf{x}_i) + n_i$ (possibly n = 0) and the prior over f is given by a GP: $f(\mathbf{x}) \sim GP(m(\mathbf{x}), k(\mathbf{x}, \mathbf{x}'))$.

Outline

- Introduction
- 2 Inference for Gaussian process priors
- 3 Parameter estimation

Inference for Gaussian process priors : noiseless case

• $y_i = f(\mathbf{x}_i)$ for i = 1: n. Let $\mathbf{x}_D = [\mathbf{x}_1, \dots, \mathbf{x}_n]^T$ and $\mathbf{y}_D = [y_1, \dots, y_n]^T$. Let $\mathbf{x}_I \in \mathbb{R}^{d \times m}$ denote a vector of points for which we want to infer $\mathbf{y}_I = \mathbf{f}(\mathbf{x}_I) = [f(\mathbf{x}_{I,1}), \dots, f(\mathbf{x}_{I,m})]^T \in \mathbb{R}^m$ from $p(\mathbf{y}_I \mid \mathbf{x}_I, \mathbf{x}_D, \mathbf{y}_D)$. As $f(\mathbf{x}) \sim GP(m(\mathbf{x}), k(\mathbf{x}, \mathbf{x}'))$,

$$\begin{bmatrix} \mathbf{y}_I \\ \mathbf{y}_D \end{bmatrix} = \begin{bmatrix} \mathbf{f}(\mathbf{x}_I) \\ \mathbf{f}(\mathbf{x}_D) \end{bmatrix} \sim \mathcal{N} \left(\begin{bmatrix} \mathbf{m}(\mathbf{x}_I) \\ \mathbf{m}(\mathbf{x}_D) \end{bmatrix}, \begin{bmatrix} \mathbf{K}(\mathbf{x}_I, \mathbf{x}_I) & \mathbf{K}(\mathbf{x}_I, \mathbf{x}_D) \\ \mathbf{K}(\mathbf{x}_D, \mathbf{x}_I) & \mathbf{K}(\mathbf{x}_D, \mathbf{x}_D) \end{bmatrix} \right)$$
(3)

Then:

$$\mathbf{f}(\mathbf{x}_I) \mid \mathbf{x}_I, \mathbf{x}_D, \mathbf{y}_D \sim \mathcal{N}\left(\mathbf{m}_{post}(\mathbf{x}_I), \mathbf{K}_{post}(\mathbf{x}_I, \mathbf{x}_I)\right)$$
 (4)

with

$$\mathbf{m}_{post}(\mathbf{x}_I) = \mathbf{m}(\mathbf{x}_I) + \mathbf{K}(\mathbf{x}_I, \mathbf{x}_D) \mathbf{K}(\mathbf{x}_D, \mathbf{x}_D)^{-1} (f(\mathbf{x}_D) - \mathbf{m}(\mathbf{x}_D))$$

$$\mathbf{K}_{post}(\mathbf{x}_I, \mathbf{x}_I) = \mathbf{K}(\mathbf{x}_I, \mathbf{x}_I) - \mathbf{K}(\mathbf{x}_I, \mathbf{x}_D)\mathbf{K}(\mathbf{x}_D, \mathbf{x}_D)^{-1}\mathbf{K}(\mathbf{x}_D, \mathbf{x}_I)$$
(5)

- Common choices:
 - $m(\mathbf{x}) = 0.$
 - $k(\mathbf{x}, \mathbf{x}') = \sigma_f^2 \exp(\frac{-1}{2} \| \mathbf{x} \mathbf{x}' \|_{\mathbf{\Sigma}^{-1}}) \text{ with } \mathbf{\Sigma} \in \mathbb{R}^{d \times d}.$

Inference for Gaussian process priors: noisy case

• $y_i = f(\mathbf{x}_i) + n_i$ with $\mathbb{E}[n_i^2] = \sigma_n^2$. Then, $\operatorname{cov}(y_i, y_j) = k(x_i, x_j) + \sigma_n^2 \delta_{i,j}$. Then we get the same results as before but with $\mathbf{K}(\mathbf{x}_D, \mathbf{x}_D)$ changed to $\mathbf{K}(\mathbf{x}_D, \mathbf{x}_D) + \sigma_n^2 \mathbf{I}$:

$$f(\mathbf{x}_I) \mid \mathbf{x}_I, \mathbf{x}_D, \mathbf{y}_D \sim \mathcal{N}\left(\mathbf{m}_{post}^n(\mathbf{x}_I), \mathbf{K}_{post}^n(\mathbf{x}_I, \mathbf{x}_I)\right)$$
 (6)

with

$$\mathbf{m}^n_{post}(\mathbf{x}_I) = \mathbf{m}(\mathbf{x}_I) + \mathbf{K}(\mathbf{x}_I,\mathbf{x}_D)[\mathbf{K}(\mathbf{x}_D,\mathbf{x}_D) + \sigma_n^2\mathbf{I}]^{-1}(f(\mathbf{x}_D) - \mathbf{m}(\mathbf{x}_D))$$

$$\mathbf{K}_{post}^{n}(\mathbf{x}_{I}, \mathbf{x}_{I}) = \mathbf{K}(\mathbf{x}_{I}, \mathbf{x}_{I}) - \mathbf{K}(\mathbf{x}_{I}, \mathbf{x}_{D})[\mathbf{K}(\mathbf{x}_{D}, \mathbf{x}_{D}) + \sigma_{n}^{2}\mathbf{I}]^{-1}\mathbf{K}(\mathbf{x}_{D}, \mathbf{x}_{I})$$
(7)

Example

- $y = \sin(2x) + \mathcal{N}(0, \sigma_n^2)$
- Noiseless and noisy cases with $\sigma_n = 0$ and $\sigma_n = .1$
- m(x) = 0 and $k(x, x') = \sigma_f^2 e^{-\frac{(x-x')^2}{2\sigma_x^2}}$ $(+\sigma_y^2 \delta_{x,x'}$ for data)

Figure – $\sigma_n = 0$ (left) and $\sigma_n = .1$ (right). $(\sigma_x, \sigma_f, \sigma_y) = (.5, .5, 0)$ (left) and $(\sigma_x, \sigma_f, \sigma_y) = (.5, .5, .1)$ (right)

Outline

- Introduction
- 2 Inference for Gaussian process priors
- 3 Parameter estimation

Parameter estimation: grid method

- To make a convenient choice for the parameters one can choose to maximize the likelihood $p(\mathbf{y}_D, \mathbf{x}_D \mid \sigma_x, \sigma_f, \sigma_y) \propto p(\mathbf{y}_D \mid \mathbf{x}_D, \sigma_x, \sigma_f, \sigma_y)$: $\log p(\mathbf{y}_D \mid \sigma_x, \sigma_f, \sigma_y) = -\frac{1}{2} \left(\mathbf{y}_D^T \mathbf{K}^{-1} \mathbf{y}_D + \log |\mathbf{K}| + n \log(2\pi) \right)$ with $\mathbf{K}_{ij} = \sigma_f^2 e^{-\frac{(x_i x_j)^2}{2\sigma_x^2}} + \sigma_y^2 \delta_{i,j}$.
- Grid search : example $y = \sin(2x)$

Figure –
$$(\sigma_x^2, \sigma_f^2) \in [.01, 5] \times [.01, 5], 100 \times 100 \text{ grid} \rightarrow \text{left} : (\sigma_x, \sigma_f) = (.5, .5); \text{ right} : (\sigma_{x,MV}, \sigma_{f,MV}) = (1.27, 1.82)$$

Parameter estimation: descent method

$$L(\theta) = \log p(\mathbf{y}_D \mid \theta) = -\frac{1}{2} \left(\mathbf{y}_D^T \mathbf{K}^{-1} \mathbf{y}_D + \log |\mathbf{K}| + n \log(2\pi) \right)$$
 with $\theta = (\sigma_x^2, \sigma_f^2, \sigma_y^2)$. Then
$$\frac{\partial L(\theta)}{\partial \theta_k} = \frac{1}{2} Tr \left((\mathbf{K}^{-1} \mathbf{y}_D \mathbf{y}_D^T \mathbf{K}^{-1} - \mathbf{K}^{-1}) \frac{\partial \mathbf{K}}{\partial \theta_k} \right)$$

• Exercise : check the above expression for $\frac{\partial L(\theta)}{\partial \theta_k}$.

Parameter estimation: descent method (II)

• For
$$\mathbf{K}_{ij} = \sigma_f^2 e^{-\frac{(\mathbf{x}_i - \mathbf{x}_j)^2}{2\sigma_x^2}} + \sigma_y^2 \delta_{i,j},$$

$$\frac{\partial \mathbf{K}}{\partial \sigma_x^2} = -\frac{1}{2\sigma_x^4} (\mathbf{x}_D \mathbf{1}^T - \mathbf{1} \mathbf{x}_D^T) \odot (\mathbf{x}_D \mathbf{1}^T - \mathbf{1} \mathbf{x}_D^T) \odot (\mathbf{K} - \sigma_y^2 \mathbf{I})$$

$$\frac{\partial \mathbf{K}}{\partial \sigma_f^2} = \frac{1}{\sigma_f^2} (\mathbf{K} - \sigma_y^2 \mathbf{I})$$

$$\frac{\partial \mathbf{K}}{\partial \sigma_y^2} = \mathbf{I}$$
(8)

where \odot is the Hadamard product : $[A \odot B]_{ij} = A_{ij}B_{ij}$

• Usual descent techniques can be used but often there are local minima!

UE Stochastic Dynamic models - Summary

- We have studied
 - ► Measure theory : definitions and theorems (Radon-Nikodym-Lebesgue theorem)
 - ▶ Optimal filtering of stochastic processes : stationary case (Wiener filters), linear state space models and Kalman filter, non linear state space models (particle filters)
 - ▶ Stochastic differential equations : complements of probabilities and Brownian motion, Itô integration and Itô formula, analytical and numerical integration of SDEs, parameter estimation for SDEs.
 - ► Time series analysis : AR, ARMA, ARIMA, ...
 - ▶ Interpolation and approximation via Gaussian process priors.
- Topics that we did not cover : prediction theory WSS processes, more advanced Kalman and particle filters, SDEs with jumps, deterministic dynamic models (chaos, ...), models estimation and control.
- What could be done to improve the UE : duration, contents, ...?