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Estimation of probability density functions

We are interested in estimating an unknown probability
distribution from observed data x1:n = x1, . . . , xn

Why: once estimated we can apply all results from probability
theory to the distribution of data.
The empirical distribution estimator is well suited in the case of
discrete valued distributions
More general distributions can be studied

▶ via non parametric approaches (histograms, kernel estimators)
▶ via parametric approaches (simple parametric models, mixture

models)
▶ using non Bayesian or Bayesian approaches

Non parametric, kernel based approaches are presented below here
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Empirical distribution

Empirical distribution: P̂n(dx) = n−1
∑

k=1:n δxk
(dx).

Empirical distribution function: F̂n(x) = n−1
∑

k=1:n 1I[xk,+∞[(x).
For any x,

lim
n→∞

F̂n(x)
a.s.
= FX(x).

Example: empirical moments.
The empirical distribution is well suited to estimate integral values
in the form E[g(X)] but not to model Probability Density
Functions (PDFs) (e.g. to estimate PDF maximum location, ...).
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Nonparametric PDF estimation: histograms

Anchor points b0 ≤ xmin ≤ . . . ≤ xmax ≤ bK and h = bj+1 − bj ,

p̂(x) =
∑

j=0:K−1

nj

nh
1I[bj ,bj+1[(x)

with nj = #{xi|xi ∈ [bj , bj+1[}
Number and widths of the classes ?

▶ Sturges’ rule: K = ⌈1 + log2 n⌉
▶ Scott’s rule: h = 3.5σ̂n−1/3

▶ ...

The shape of the histogram is not much realistic to model
continuous PDFs.
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Non parametric PDF estimation: kernel estimator

p̂n(x) = (Kh ⊗ 1P̂n)(x)
= n−1

∑
k=1:nKh(x− xk)

= (nh)−1
∑

k=1:nK(
x− xk

h
)

(1)

K(x) must satisfy some properties: K(x) ≥ 0 and
∫
K(x)dx = 1

In addition, generally we also choose K(−x) = K(x)

Choice of K(x): uniform, triangular, Gaussian, ...
Choice of h ?

1⊗ represents the convolution operator
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Performance analysis: MSE and MISE
Mean, variance and Mean Squared Error (MSE):

E[p̂n(x)] = E[Kh(x−X)] = (Kh ⊗ p)(x)

V[p̂n(x)] = n−1
(
E[(Kh(x−X))2]− (E[p̂n(x)])2

)
= n−1

(
(K2

h ⊗ p)(x)− ((Kh ⊗ p)(x))2
)

MSE(x, h) = E[(p̂h(x)− p(x))2]
= V[p̂h(x)] + (E[p̂h(x)]− p(x))2

(2)

Mean integrated squared error (MISE):

MISE(h) =
∫
xMSE(x, h)dx

=
1

nh

∫
K2(x)dx+ (1− 1

n
)

∫
((Kh ⊗ p)(x))2dx

−2

∫
(Kh ⊗ p)(x)p(x)dx+

∫
p2(x)dx

(3)
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Performance analysis: asymptotic approximations
Assumptions:

▶ p ∈ C2(R),
∫
p2 < ∞

▶ limn→∞ h = 0, limn→∞ nh = ∞
▶ K(−x) = K(x), m2(K) =

∫
x2K(x)dx < ∞.

▶ Notation: R(g) =
∫
g2

Then,

MSE(x, h) = 1
nhR(K)p(x) + h4

4 m2(K)p′′(x)2 + o( 1
nh + h4)

MISE(h) = 1
nhR(K) + h4

4 m2(K)R(p′′) + o( 1
nh + h4)

= AMISE(h) + o( 1
nh + h4)

(4)
Interest: Optimize the trade-off between variance ( 1

nhR(K))
squared bias (h

4

4 m2(K)R(p′′)) by minimizing AMISE(h):

hAMISE =

(
R(K)

n m2(K)R(p′′)

)1/5

∝ n−1/5

and AMISE(hAMISE) ∝ n−4/5

(5)

Problem: R(p′′) is not known!
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Performance analysis: the Gaussian case

Often, the Gaussian case is considered as a reference to compute
R(p′′): p(x) = (2πσ2)−1/2 exp(− (x−m)2

2σ2 ).
For X ∼ N (0, σ2) and with a Gaussian kernel, we get then

MISE(h) =
1

2
√
π

(
1

nh
+

1− n−1

√
h2 + σ2

+
23/2√

h2 + 2σ2
+

1

σ2

)

hMISE ≈ 1.06σ̂n−1/5 (Silverman), with σ̂2 = n−1
∑

(xi − m̂)2 and
m̂ = n−1

∑
xi (or other estimates).

Extension to higher dimensions: h = σ̂n−1/(d+4) with d = dim(x).
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Kernel estimator: example of the influence of the
bandwidth

January 24, 2023 9 / 14



KDE and KNNs
In KNN (K-Nearest Neighbours), instead of setting bandwidth, we grow
it until it contains K observations.

Around x we obtain a sphere SK(x) with volume VK(x) and set

p̂(x) ∝ 1

VK(x)

Interesting approach for classification:
▶ training data set D = {(xi, yi)}i=1:n where yi is the class index of

xi. p̂(x | D) ∝ [VK(x)]−1.
▶ notations: nc = #{xi; yi = c} and nc(x) = #{xi ∈ SK(x); yi = c}
▶ the class prior and the probability of y at point x can be set to

p̂(y = c | D) =
nc

n
and p̂(y = c | x,D) =

nc(x)

K

▶ classification: ĉ = argmaxc p̂(y = c | x,D) = argmaxc nc(x)
▶ note also that we have the following conditional distributions for x:

p̂(x | y = c,D) =
p̂(y = c | x,D)p̂(x | D)

p̂(y = c | D)
∝ nc(x)

ncVK(x)
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KNN example
Mixture model in R2: Let p(x1, x2) = p(x1, x2 | θ)× p(θ), with
p(θ) ∼ U[0,2π], P (y = 1) = 0.2 = 1− P (y = 2) and

p(x1, x2 | θ) ∼ 0.2×N (0,

[
1 0
0 1

]
) + 0.8×N (

[
4 cos θ
4 sin θ

]
,

[
1 0
0 1

]
)

We plot a sample of size 103 with classes colorization and
maximum a posteriori KNN classification
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Kernel regression (I)

Objective: get the expression of an approximation of the regression
curve E[Y |X = x] involving a kernel PDF estimator.
Letting

p̂(x, y) =
1

n

∑
Khx(x− xi)Khy(y − yi)

we get

Ep̂[Y |X = x] =

∑
yiKhx(x− xi)∑
Khx(x− xi)
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Kernel estimator: regression (II)
Example: Apply the method to a pair of RV.s (X,Y ), with
p(x) ∼ N (0, 1) and p(y|x) ∼ N (sin(2x), 0.1).
Comparison with linear regression:

Why is kernel regression better? Answer:
min{h;h(x)=Ax+b} E ∥ Y − h(X) ∥2≥ min{g;E[g(X)2]<∞} E ∥ Y − g(X) ∥2
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Conclusion

In this lesson, we have
▶ defined histograms and Kernel Density Estimators (KDE)
▶ explained principles for kernel bandwidth optimization
▶ introduced K Nearest Neighbor (KNN) techniques for density

estimation and classification.
▶ introduced empirical regression with kernels

In the lab that comes with this lesson, you will have opportunity to
implement KDE, kernel regression and KNN.
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